• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Subspace averaging and order determination for source enumeration

    Ver/Abrir
    SubspaceAveragingand ... (551.4Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/17953
    DOI: 10.1109/TSP.2019.2912151
    ISSN: 1053-587X
    ISSN: 1941-0476
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Garg, VaibhavAutoridad Unican; Santamaría Caballero, Luis IgnacioAutoridad Unican; Ramírez García, David; Scharf, Louis L.Autoridad Unican
    Fecha
    2019-06-01
    Derechos
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Transactions on Signal Processing, 2019, 67(11), 3028-3041
    Editorial
    Institute of Electrical and Electronics Engineers Inc.
    Enlace a la publicación
    https://doi.org/10.1109/TSP.2019.2912151
    Palabras clave
    Array processing
    Dimension
    Grassmann manifold
    Order estimation
    Source enumeration
    Subspace averaging
    Resumen/Abstract
    In this paper, we address the problem of subspace averaging, with special emphasis placed on the question of estimating the dimension of the average. The results suggest that the enumeration of sources in a multi-sensor array, which is a problem of estimating the dimension of the array manifold, and as a consequence the number of radiating sources, may be cast as a problem of averaging subspaces. This point of view stands in contrast to conventional approaches, which cast the problem as one of identifiying covariance models in a factor model. We present a robust formulation of the proposed order fitting rule based on majorization-minimization algorithms. A key element of the proposed method is to construct a bootstrap procedure, based on a newly proposed discrete distribution on the manifold of projection matrices, for stochastically generating subspaces from a function of experimentally determined eigenvalues. In this way, the proposed subspace averaging (SA) technique determines the order based on the eigenvalues of an average projection matrix, rather than on the likelihood of a covariance model, penalized by functions of the model order. By means of simulation examples, we show that the proposed SA criterion is especially effective in high-dimensional scenarios with low sample support.
    Colecciones a las que pertenece
    • D12 Artículos [360]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España