dc.contributor.author | Garrido Ortiz, Pablo | |
dc.contributor.author | Leith, Douglas J. | |
dc.contributor.author | Agüero Calvo, Ramón | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2020-01-28T13:23:00Z | |
dc.date.available | 2020-01-28T13:23:00Z | |
dc.date.issued | 2019-10 | |
dc.identifier.issn | 1063-6692 | |
dc.identifier.issn | 1558-2566 | |
dc.identifier.other | TEC2015-71329-C2-1-R | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/17934 | |
dc.description.abstract | We consider the transmission of packets across a lossy end-to-end network path so as to achieve low in-order delivery delay. This can be formulated as a decision problem, namely deciding whether the next packet to send should be an information packet or a coded packet. Importantly, this decision is made based on delayed feedback from the receiver. While an exact solution to this decision problem is challenging, we exploit ideas from queueing theory to derive scheduling policies based on prediction of a receiver queue length that, while suboptimal, can be efficiently implemented and offer substantially better performance than state of the art approaches. We obtain a number of useful analytic bounds that help characterise design trade-offs and our analysis highlights that the use of prediction plays a key role in achieving good performance in the presence of significant feedback delay. Our approach readily generalises to networks of paths and we illustrate this by application to multipath trans port scheduler design. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the
project ADVICE (TEC2015-71329-C2-1-R). | es_ES |
dc.format.extent | 14 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | es_ES |
dc.rights | © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.source | IEEE/ACM Transactions on Networking, 2019, 27(5), 1987-2000 | es_ES |
dc.subject.other | Optimal scheduling | es_ES |
dc.subject.other | Forward error correction | es_ES |
dc.subject.other | Random linear coding | es_ES |
dc.subject.other | Low delay coding | es_ES |
dc.subject.other | ARQ | es_ES |
dc.subject.other | Multi-path | es_ES |
dc.title | Joint scheduling and coding for low in-order delivery delay over lossy paths with delayed feedback | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1109/TNET.2019.2934522 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1109/TNET.2019.2934522 | |
dc.type.version | acceptedVersion | es_ES |