Mostrar el registro sencillo

dc.contributor.authorGarcía-García, Patricia
dc.contributor.authorRuiz, Mario
dc.contributor.authorReyes, Ricardo
dc.contributor.authorDelgado, Araceli
dc.contributor.authorÉvora, Carmen
dc.contributor.authorRiancho Moral, José Antonio 
dc.contributor.authorRodríguez Rey, José Carlos 
dc.contributor.authorPérez Campo, Flor María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-01-22T16:23:37Z
dc.date.available2020-01-22T16:23:37Z
dc.date.issued2019
dc.identifier.issn2157-6564
dc.identifier.issn2157-6580
dc.identifier.otherRTI2018- 097324es_ES
dc.identifier.urihttp://hdl.handle.net/10902/17883
dc.description.abstractDespite the great advance of bone tissue engineering in the last few years, repair of bone defects remains a major problem. Low cell engraftment and dose-dependent side effects linked to the concomitant administration of bone morphogenetic proteins (BMPs) are the main problems currently hindering the clinical use of mesenchymal stem cell (MSC)-based therapies in this field. We have managed to bypass these drawbacks by combining the silencing the Smurf1 ubiquitin ligase in MSCs with the use of a scaffold that sustainably releases low doses of BMP-2. In this system, Smurf1 silencing is achieved by using GapmeRs, a clinically safe method that avoids the use of viral vectors, facilitating its translation to the clinic. Here, we show that a single transient transfection with a small quantity of a Smurf1-specific GapmeR is able to induce a significant level of silencing of the target gene, enough to prime MSCs for osteogenic differentiation. Smurf1 silencing highly increases MSCs responsiveness to BMP-2, allowing a dramatic reduction of the dose needed to achieve the desired therapeutic effect. The combination of these primed cells with alginate scaffolds designed to sustainably and locally release low doses of BMP-2 to the defect microenvironment is able to induce the formation of a mature bone matrix both in an osteoporotic rat calvaria system and in a mouse ectopic model. Importantly, this approach also enhances osteogenic differentiation in MSCs from osteoporotic patients, characterized by a reduced bone-forming potential, even at low BMP doses, underscoring the regenerative potential of this system.es_ES
dc.description.sponsorshipACKNOWLEDGMENTS: This research was supported by a grant from the Spanish Ministerio de Economia y competitividad (Project RTI2018-097324), a grant from the Instituto de Investigación Marqués de Valdecilla (IDIVAL, INNVAL 17/15), and Palex Medical S.A.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley Periodicals, Inc. on behalf of AlphaMed Presses_ES
dc.rights© The Authors. Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Presses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceStem Cells Transl Med , 8 (12), 1306-1317es_ES
dc.subject.otherMesenchymal Stem Cellses_ES
dc.subject.otherBone Regenerationes_ES
dc.subject.otherLNA-ASOes_ES
dc.subject.otherGapmeRes_ES
dc.subject.otherSmurf1es_ES
dc.subject.otherOsteogenesises_ES
dc.subject.otherBMPes_ES
dc.titleSmurf1 Silencing Using a LNA-ASOs/Lipid Nanoparticle System to Promote Bone Regenerationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://www.doi.org/10.1002/sctm.19-0145es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/sctm.19-0145
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Authors. Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed PressExcepto si se señala otra cosa, la licencia del ítem se describe como © The Authors. Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press