Mostrar el registro sencillo

dc.contributor.authorSantisteban Díaz, Agustín 
dc.contributor.authorPiquero González, Alejandro
dc.contributor.authorOrtiz Fernández, Félix 
dc.contributor.authorDelgado San Román, Fernando 
dc.contributor.authorOrtiz Fernández, Alfredo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-01-10T09:32:58Z
dc.date.available2020-01-10T09:32:58Z
dc.date.issued2019-12-02
dc.identifier.issn2169-3536
dc.identifier.otherDPI2015-71219-C21-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/17743
dc.description.abstractThis contribution presents the early results of a R&D collaboration established between the University of Cantabria and the Power Transformer Manufacturer EFACEC. This paper tests two different techniques of steady state thermal modelling applied to power transformer windings, Computational Fluid Dynamics (CFD) and Thermal-Hydraulic Network Modelling (THNM). The state of the art of thermal modelling demonstrates that these techniques have been used to calculate both average and hotspot winding temperatures by solving the winding temperature and flows profiles within the winding. THNM models have worse accuracy than CFD in the predicted results. The improvement of these THNM models is a topic of study in transformer thermal modelling. The first goal of this paper is to test the accuracy of a new calibrated THNM model of a disc-type winding immersed in mineral oil. Then, this THNM model is tested with ester-based liquids, such as a natural ester and a synthetic ester, to determine if it can be applied to these liquids without further calibrations. Finally, the cooling performance of both type of liquids is compared using only the THNM model results. The results of this work show that the THNM model developed herein gives good estimations of temperatures compared to those obtained with CFD for both types of liquids. Also, the use of alternative fluids leads to lower temperatures when considering the same oil flow rate and temperature as inlet boundary condition.es_ES
dc.description.sponsorshipThis work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme through the Marie Skłodowska-Curie Action-Research and Innovation Staff Exchange (MSCA-RISE) under Agreement 823969, and in part by the Ministry of Economy through the National Research Project: Improvement of Insulation Systems of Transformers through Dielectric Nanofluids under Grant DPI2015-71219-C21-R.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Access, 2019, 7, 174651-174661es_ES
dc.subject.otherCFDes_ES
dc.subject.otherTHNMes_ES
dc.subject.otherThermal modelinges_ES
dc.subject.otherPower transformerses_ES
dc.subject.otherMineral oiles_ES
dc.subject.otherEster-based liquidses_ES
dc.titleThermal modelling of a power transformer disc type winding immersed in mineral and ester-based oils using network models and CFDes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/ACCESS.2019.2957171es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/823969/EU/Raising knowledge and developing technology for the design and deployment of high-performance power transformers immersed in biodegradable fluids“BIOTRAFO”/BIOTRAFO/es_ES
dc.identifier.DOI10.1109/ACCESS.2019.2957171
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International