• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Proyectos de investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Proyectos de investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

    Ver/Abrir
    CanBiasCorrection.pdf (2.787Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/17571
    DOI: 10.1007/s00382-017-3668-z
    ISSN: 0930-7575
    ISSN: 1432-0894
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Manzanas, RodrigoAutoridad Unican; Lucero, A.; Weisheimer, A.; Gutiérrez Llorente, José Manuel
    Fecha
    2018-02-01
    Derechos
    © Springer. This is a post-peer-review, pre-copyedit version of an article published in Climate Dynamics. The final authenticated version is available online at: https://doi.org/10.1007/s00382-017-3668-z
    Publicado en
    Climate Dynamics, 2018, 50(3-4), 1161-1176
    Editorial
    Springer
    Enlace a la publicación
    https://doi.org/10.1007/s00382-017-3668-z
    Palabras clave
    Statistical downscaling
    Perfect prognosis
    Bias correction
    Seasonal forecasting
    Precipitation
    Skill
    Correlation
    Reliability categories
    Resumen/Abstract
    Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.
    Colecciones a las que pertenece
    • D52 Artículos [1339]
    • D52 Proyectos de investigación [426]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España