• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Proyectos de investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Física de Cantabria (IFCA) - centro mixto UC-CSIC
    • D52 Proyectos de investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset

    Ver/Abrir
    BiasAdjustmentandEns ... (11.08Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/17569
    DOI: 10.1007/s00382-019-04640-4
    ISSN: 0930-7575
    ISSN: 1432-0894
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Manzanas, RodrigoAutoridad Unican; Gutiérrez Llorente, José Manuel; Bhend, Jonas; Hemri, Stephan; Doblas Reyes, Francisco Javier; Torralba Fernández, Verónica; Penabad, E.; Brookshaw, Anca
    Fecha
    2019-08
    Derechos
    © Springer. This is a post-peer-review, pre-copyedit version of an article published in Climate Dynamics. The final authenticated version is available online at: https://doi.org/10.1007/s00382-019-04640-4
    Publicado en
    Climate Dynamics, 2019, 53(3-4), 1287-1305
    Editorial
    Springer
    Enlace a la publicación
    https://doi.org/10.1007/s00382-019-04640-4
    Palabras clave
    Seasonal forecasting
    C3S
    Bias adjustment
    Ensemble recalibration
    Forecast quality
    Reliability
    Ensemble size
    Hindcast length
    Resumen/Abstract
    This work presents a comprehensive intercomparison of diferent alternatives for the calibration of seasonal forecasts, ranging from simple bias adjustment (BA)-e.g. quantile mapping-to more sophisticated ensemble recalibration (RC) methods- e.g. non-homogeneous Gaussian regression, which build on the temporal correspondence between the climate model and the corresponding observations to generate reliable predictions. To be as critical as possible, we validate the raw model and the calibrated forecasts in terms of a number of metrics which take into account diferent aspects of forecast quality (association, accuracy, discrimination and reliability). We focus on one-month lead forecasts of precipitation and temperature from four state-of-the-art seasonal forecasting systems, three of them included in the Copernicus Climate Change Service dataset (ECMWF-SEAS5, UK Met Ofce-GloSea5 and Météo France-System5) for boreal winter and summer over two illustrative regions with diferent skill characteristics (Europe and Southeast Asia). Our results indicate that both BA and RC methods efectively correct the large raw model biases, which is of paramount importance for users, particularly when directly using the climate model outputs to run impact models, or when computing climate indices depending on absolute values/thresholds. However, except for particular regions and/or seasons (typically with high skill), there is only marginal added value-with respect to the raw model outputs-beyond this bias removal. For those cases, RC methods can outperform BA ones, mostly due to an improvement in reliability. Finally, we also show that whereas an increase in the number of members only modestly afects the results obtained from calibration, longer hindcast periods lead to improved forecast quality, particularly for RC methods.
    Colecciones a las que pertenece
    • D52 Artículos [1337]
    • D52 Proyectos de investigación [424]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España