• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical downscaling in the tropics can be sensitive to reanalysis choice: A case study for precipitation in the Philippines

    Ver/Abrir
    StatisticalDownscali ... (3.018Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/17406
    DOI: 10.1175/JCLI-D-14-00331.1
    ISSN: 0894-8755
    ISSN: 1520-0442
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Manzanas, RodrigoAutoridad Unican; Brands, Swen FranzAutoridad Unican; San Martín Segura, Daniel; Lucero, Anthony Joseph; Limbo, Carlo A.; Gutiérrez Llorente, José Manuel
    Fecha
    2015-05-12
    Derechos
    © 2015 American Meteorological Society. AMS´s Full Copyright Notice: https://www.ametsoc.org/ams/index.cfm/publications/authors/journal-and-bams-authors/author-resources/copyright-information/copyright-policy/
    Publicado en
    Journal of Climate, 2015, 28(10), 4171-4184
    Editorial
    American Meteorological Society
    Enlace a la publicación
    https://doi.org/10.1175/JCLI-D-14-00331.1
    Palabras clave
    Climate change
    Statistical techniques
    Reanalysis data
    Resumen/Abstract
    This work shows that local-scale climate projections obtained by means of statistical downscaling are sensitive to the choice of reanalysis used for calibration. To this aim, a generalized linear model (GLM) approach is applied to downscale daily precipitation in the Philippines. First, the GLMs are trained and tested separately with two distinct reanalyses (ERA-Interim and JRA-25) using a cross-validation scheme over the period 1981–2000. When the observed and downscaled time series are compared, the attained performance is found to be sensitive to the reanalysis considered if climate change signal–bearing variables (temperature and/or specific humidity) are included in the predictor field. Moreover, performance differences are shown to be in correspondence with the disagreement found between the raw predictors from the two reanalyses. Second, the regression coefficients calibrated either with ERA-Interim or JRA-25 are subsequently applied to the output of a global climate model (MPI-ECHAM5) in order to assess the sensitivity of local-scale climate change projections (up to 2100) to reanalysis choice. In this case, the differences detected in present climate conditions are considerably amplified, leading to “delta-change” estimates differing by up to 35% (on average for the entire country) depending on the reanalysis used for calibration. Therefore, reanalysis choice is an important contributor to the uncertainty of local-scale climate change projections and, consequently, should be treated with as much care as other better-known sources of uncertainty (e.g., the choice of the GCM and/or downscaling method). Implications of the results for the entire tropics, as well as for the model output statistics downscaling approach are also briefly discussed.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [326]
    • D52 Artículos [1337]
    • D52 Proyectos de investigación [424]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España