Mostrar el registro sencillo

dc.contributor.authorOrtega Quijano, Noé 
dc.contributor.authorArce Diego, José Luis 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-02-22T11:38:06Z
dc.date.available2013-02-22T11:38:06Z
dc.date.issued2011-07-01
dc.identifier.issn1539-4794
dc.identifier.issn0146-9592
dc.identifier.urihttp://hdl.handle.net/10902/1730
dc.description.abstractThe evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the 16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical implications of each of them. Group theory is applied to establish the relationship between the differential matrix and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular subgroup.es_ES
dc.format.extent3 p.es_ES
dc.language.isoenges_ES
dc.publisherThe Optical Society (OSA)es_ES
dc.rights© 2011 Optical Society of America. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002429. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.es_ES
dc.sourceOptics Letters, 2011, 36(13), 2429-2431es_ES
dc.titleDepolarizing differential Mueller matriceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1364/OL.36.002429
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1364/OL.36.002429
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo