Mostrar el registro sencillo

dc.contributor.authorGil Gómez, Amparo 
dc.contributor.authorSegura Sala, José Javier 
dc.contributor.authorTemme, Nico M.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-10-25T15:14:26Z
dc.date.available2020-08-01T02:45:11Z
dc.date.issued2019-07
dc.identifier.issn0029-599X
dc.identifier.issn0945-3245
dc.identifier.otherMTM2015-67142-P (MINECO/FEDER, UE)es_ES
dc.identifier.otherPGC2018-098279-B-I00 (MCIU/AEI/FEDER,UE)es_ES
dc.identifier.urihttp://hdl.handle.net/10902/17091
dc.description.abstractMethods for the computation of classical Gaussian quadrature rules are described which are effective both for small and large degree. These methods are reliable because the iterative computation of the nodes has guaranteed convergence, and they are fast due to their fourth-order convergence and its asymptotic exactness for an appropriate selection of the variables. For Gauss?Hermite and Gauss?Laguerre quadratures, local Taylor series can be used for computing efficiently the orthogonal polynomials involved, with exact initial values for the Hermite case and first values computed with a continued fraction for the Laguerre case. The resulting algorithms have almost unrestricted validity with respect to the parameters. Full relative precision is reached for the Hermite nodes, without any accuracy loss and for any degree, and a mild accuracy loss occurs for the Hermite and Laguerre weights as well as for the Laguerre nodes. These fast methods are exclusively based on convergent processes, which, together with the high order of convergence of the underlying iterative method, makes them particularly useful for high accuracy computations. We show examples of very high accuracy computations (of up to 1000 digits of accuracy).es_ES
dc.format.extent33 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer New York LLCes_ES
dc.rights© Springeres_ES
dc.sourceNumerische Mathematik , November 2019, Volume 143, Issue 3, pp 649-682es_ES
dc.titleFast, reliable and unrestricted iterative computation of Gauss-Hermite and Gauss-Laguerre quadratureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://link.springer.com/article/10.1007%2Fs00211-019-01066-2es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00211-019-01066-2
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo