Mostrar el registro sencillo

dc.contributor.advisorLloret Iglesias, Lara
dc.contributor.authorRuiz Martínez, Estela 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-09-24T12:17:32Z
dc.date.available2020-01-01T03:45:13Z
dc.date.issued2019-07-01
dc.identifier.urihttp://hdl.handle.net/10902/16903
dc.description.abstractABSTRACT: Non-metallic inclusions are unavoidably produced during steel casting resulting in lower mechanical strength and other detrimental effects. This study was aimed at developing a reliable Machine Learning algorithm to classify castings of steel for tire reinforcement depending on the number and properties of inclusions, experimentally determined. 855 observations were available for training, validation and testing the algorithms, obtained from the quality control of the steel. 140 parameters are monitored during fabrication, which are the features of the analysis; the output is 1 or 0 depending on whether the casting is rejected or not. The following algorithms have been employed: Logistic Regression, K-Nearest Neighbors, Support Vector Classifier (linear and RBF kernels), Random Forests, AdaBoost, Gradient Boosting and Artificial Neural Networks. The reduced value of the rejection rate implies that classification must be carried out on an imbalanced dataset. Resampling methods and specific scores for imbalanced datasets (Recall, Precision and AUC rather than Accuracy) were used. Random Forest was the most successful method providing an AUC in the test set of 0.85. No significant improvements were detected after resampling. The improvement derived from implementing this algorithm in the sampling procedure for quality control during steelmaking has been quantified. In this sense, it has been proved that this tool allows the samples with a higher probability of being rejected to be selected, thus improving the effectiveness of the quality control. In addition, the optimized Random Forest has enabled to identify the most important features, which have been satisfactorily interpreted on a metallurgical basis.es_ES
dc.description.abstractRESUMEN: Las inclusiones no metálicas se producen inevitablemente durante la fabricación del acero, lo que resulta en una menor resistencia mecánica y otros efectos perjudiciales. El objetivo de este estudio fue desarrollar un algoritmo fiable para clasificar las coladas de acero de refuerzo de neumáticos en función del número y el tipo de las inclusiones, determinadas experimentalmente. Se dispuso de 855 observaciones para el entrenamiento, validación y test de los algoritmos, obtenidos a partir del control de calidad del acero. Durante la fabricación se controlan 140 parámetros, que son las características del análisis; el resultado es 1 ó 0 dependiendo de si la colada es rechazada o no. Se han empleado los siguientes algoritmos: Regresión Logística, Vecinos K-Cercanos, Clasificador de Vectores Soporte (kernels lineales y RBF), Bosques Aleatorios, AdaBoost, Gradient Boosting y Redes Neurales Artificiales. El bajo índice de rechazo implica que la clasificación debe llevarse a cabo en un set de datos desequilibrado. Se utilizaron métodos de remuestreo y métricas específicas para conjuntos de datos desequilibrados (Recall, Precision y AUC en lugar de Accuracy). Random Forest fue el algoritmo más exitoso que proporcionó un AUC en los datos de test de 0.83. No se detectaron mejoras significativas después del remuestreo. Se ha cuantificado la mejora derivada de la implementación de este algoritmo en el procedimiento de muestreo para el control de calidad durante la fabricación de acero. En este sentido, se ha comprobado que esta herramienta permite seleccionar las muestras con mayor probabilidad de ser rechazadas, mejorando así la eficacia del control de calidad. Además, el Random Forest optimizado ha permitido identificar las variables más importantes, que han sido interpretadas satisfactoriamente sobre una base metalúrgica.es_ES
dc.format.extent36es_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.otherMachine learninges_ES
dc.subject.otherSteel wirees_ES
dc.subject.otherContinuous castinges_ES
dc.subject.otherNon-metallic inclusionses_ES
dc.subject.otherRandom Forestes_ES
dc.subject.otherImbalanced datasetes_ES
dc.subject.otherAprendizaje automáticoes_ES
dc.subject.otherAlambrón de aceroes_ES
dc.subject.otherColada continuaes_ES
dc.subject.otherInclusiones no metálicases_ES
dc.subject.otherConjunto de datos desequilibradoes_ES
dc.titleMachine learning methods for the prediction of non-metallic inclusions in steel wires for tire reinforcementes_ES
dc.title.alternativeMétodos machine learning para la predicción de inclusiones no metálicas en alambres de acero para refuerzo de neumáticoses_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.rights.accessRightsopenAccesses_ES
dc.description.degreeMáster en Ciencia de Datoses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España