• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessing the skill of precipitation and temperature seasonal forecasts in Spain: windows of opportunity related to ENSO events

    Ver/Abrir
    Assessing the skill.pdf (2.094Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/1631
    DOI: 10.1175/2009JCLI2824.1
    ISSN: 1520-0442
    ISSN: 0894-8755
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Frías Domínguez, María DoloresAutoridad Unican; Herrera García, SixtoAutoridad Unican; Cofiño González, Antonio SantiagoAutoridad Unican; Gutiérrez Llorente, José Manuel
    Fecha
    2010-01-15
    Derechos
    © 2010 American Meteorological Society. AMS´s Full Copyright Notice: https://www.ametsoc.org/ams/index.cfm/publications/authors/journal-and-bams-authors/author-resources/copyright-information/copyright-policy/
    Publicado en
    Journal of Climate, 2010, 23(2), 209–220.
    Editorial
    American Meteorological Society
    Enlace a la publicación
    http://dx.doi.org/10.1175/2009JCLI2824.1
    Resumen/Abstract
    1. The skill of state-of-the-art operational seasonal forecast models in extratropical latitudes is assessed using a multimodel ensemble from the Development of a European Multimodel Ensemble System for Seasonalto- Interannual Prediction (DEMETER) project. In particular, probabilistic forecasts of surface precipitation and maximum temperature in Spain are analyzed using a high-resolution observation gridded dataset (Spain02). To this aim, a simple statistical test based on the observed and predicted tercile anomalies is used. First, the whole period 1960–2000 is considered and it is shown that the only significant skill is found for dry events in autumn. Then, the influence of ENSO events as a potential source of conditional predictability is studied and the validation to strong La Niña or El Niño periods is restricted. Skillful seasonal predictions are found in partial agreement with the observed teleconnections derived from the historical records. On the one hand, predictability is found in spring related to El Niño events for dry events over the south and the Mediterranean coast and for hot events in the southeast areas. In contrast, La Niña drives predictability in winter for dry events over the western part and for hot events in summer over the south and the Mediterranean coast. This study considers both the direct model outputs and the postprocessed predictions obtained using a statistical downscaling method based on analogs. In general, the use of the downscaling method outperforms the direct output for precipitation, whereas in the case of the temperature no improvement is obtained.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [326]
    • D52 Artículos [1337]
    • D52 Proyectos de investigación [424]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España