Mostrar el registro sencillo

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorSokolowski, Jan
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-02-12T09:56:12Z
dc.date.available2013-02-12T09:56:12Z
dc.date.issued2010
dc.identifier.issn1095-7138
dc.identifier.issn0363-0129
dc.identifier.urihttp://hdl.handle.net/10902/1629
dc.description.abstractIn this paper we consider boundary control problems associated to a semilinear elliptic equation defined in a curved domain Ω. The Dirichlet and Neumann cases are analyzed. To deal with the numerical analysis of these problems, the approximation of Ω by an appropriate domain Ωh (typically polygonal) is required. Here we do not consider the numerical approximation of the control problems. Instead, we formulate the corresponding infinite dimensional control problems in Ωh, and we study the influence of the replacement of Ω by Ωh on the solutions of the control problems. Our goal is to compare the optimal controls defined on Γ = ∂Ω with those defined on Γh = ∂Ωh and to derive some error estimates. The use of a convenient parametrization of the boundary is needed for such estimates.es_ES
dc.format.extent35 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© 2010 Society for Industrial and Applied Mathematicses_ES
dc.sourceSiam Journal on Control and Optimization, 2010, 48(6), 3746–3780es_ES
dc.subject.otherNeumann controles_ES
dc.subject.otherDirichlet controles_ES
dc.subject.otherCurved domainses_ES
dc.subject.otherError estimateses_ES
dc.subject.otherSemilinear elliptic equationses_ES
dc.subject.otherSecond order optimality conditionses_ES
dc.titleApproximation of boundary control problems on curved domainses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1137/090761550
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo