Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/1617DOI: 10.1051/cocv/2010025
ISSN: 1262-3377
ISSN: 1292-8119
Registro completo
Mostrar el registro completo DCFecha
2011-07Derechos
© EDP Sciences, SMAI, 2010. The original publication is available at www.esaim-cocv.org
Publicado en
ESAIM: Control, Optimisation and Calculus of Variations, 2011, 17(3), 771-800
Editorial
EDP Sciences
Enlace a la publicación
Palabras clave
Quasilinear elliptic equations
Optimal control problems
Finite element approximations
Convergence of discretized controls
Resumen/Abstract
In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness of a solution for the discrete equation is an open problem.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]