Mostrar el registro sencillo

dc.contributor.authorCruz Rodríguez, Marcos 
dc.contributor.authorGonzález Villa, Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-03-22T13:11:05Z
dc.date.available2019-03-22T13:11:05Z
dc.date.issued2018-10
dc.identifier.issn1932-6203
dc.identifier.otherAYA-2015-66357-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/15998
dc.description.abstractABSTRACT: Population size estimation is relevant to social and ecological sciences. Exhaustive manual counting, the density method and automated computer vision are some of the estimation methods that are currently used. Some of these methods may work in concrete cases but they do not provide a fast, efficient and unbiased estimation in general. Recently, the CountEm method, based on systematic sampling with a grid of quadrats, was proposed. It offers an unbiased estimation that can be applied to any population. However, choosing suitable grid parameters is sometimes cumbersome. Here we define a more intuitive grid parametrization, using initial number of quadrats and sampling fraction. A crowd counting dataset with 51 images and their corresponding, manually annotated position point patterns, are used to analyze the variation of the coefficient of error with respect to different parameter choices. Our Monte Carlo resampling results show that the error depends on the sample size and the number of nonempty quadrats, but not on the size of the target population. A procedure to choose suitable parameter values is described, and the expected coefficients of error are given. Counting about 100 particles in 30 nonempty quadrats usually yields coefficients of error below 10%.es_ES
dc.description.sponsorshipThis work was supported by AYA-2015-66357-R Ministerio de Economía, Industria y Competitividad (MINECO) / Fondos Europeos de Desarrollo Regional (FEDER) to MC.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherPublic Library of Sciencees_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourcePLoS ONE 13 (10)es_ES
dc.titleSimplified procedure for efficient and unbiased population size estimationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1371/journal.pone.0206091
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España