Mostrar el registro sencillo

dc.contributor.authorCury, Jean
dc.contributor.authorOliveira, Pedro H.
dc.contributor.authorCruz Calahorra, Fernando de la 
dc.contributor.authorRocha, Eduardo P.C.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-03-20T18:39:11Z
dc.date.available2019-03-20T18:39:11Z
dc.date.issued2018
dc.identifier.issn0737-4038
dc.identifier.issn1537-1719
dc.identifier.otherBFU2014-55534-C2-1-Pes_ES
dc.identifier.otherBFU2014-62190-EXPes_ES
dc.identifier.urihttp://hdl.handle.net/10902/15930
dc.description.abstractSelf-transmissible mobile genetic elements drive horizontal gene transfer between prokaryotes. Some of these elements integrate in the chromosome, whereas others replicate autonomously as plasmids. Recent works showed the existence of few differences, and occasional interconversion, between the two types of elements. Here, we enquired on why evolutionary processes have maintained the two types of mobile genetic elements by comparing integrative and conjugative elements (ICE) with extrachromosomal ones (conjugative plasmids) of the highly abundant MPFT conjugative type. We observed that plasmids encode more replicases, partition systems, and antibiotic resistance genes, whereas ICEs encode more integrases and metabolism-associated genes. ICEs and plasmids have similar average sizes, but plasmids are much more variable, have more DNA repeats, and exchange genes more frequently. On the other hand, we found that ICEs are more frequently transferred between distant taxa. We propose a model where the different genetic plasticity and amplitude of host range between elements explain the co-occurrence of integrative and extrachromosomal elements in microbial populations. In particular, the conversion from ICE to plasmid allows ICE to be more plastic, while the conversion from plasmid to ICE allows the expansion of the element?s host range.es_ES
dc.description.sponsorshipThis work was supported by an European Research Council grant (EVOMOBILOME no. 281605), and a grant from the Agence National de la Recherche (MAGISBAC, ANR-14-CE10-0007). Work in FdlC lab was supported by grants BFU2014-55534-C2-1-P and BFU2014-62190-EXP from the Spanish Ministry of Economy and Competitiveness.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rights© The Author(s). Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMol Biol Evol. 2018 Nov 1;35(11):2850es_ES
dc.subject.otherMobile Genetic Elementses_ES
dc.subject.otherHorizontal Gene Transferes_ES
dc.subject.otherMolecular Evolutiones_ES
dc.subject.otherMicrobial Genomicses_ES
dc.subject.otherConjugationes_ES
dc.titleHost Range and Genetic Plasticity Explain the Coexistence of Integrative and Extrachromosomal Mobile Genetic Elementses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://dx.doi.org/10.1093/molbev/msy182es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1093/molbev/msy182
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Author(s). Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial LicenseExcepto si se señala otra cosa, la licencia del ítem se describe como © The Author(s). Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License