Mostrar el registro sencillo

dc.contributor.authorMartín Rodríguez, Rosa 
dc.contributor.authorAguado Menéndez, Fernando 
dc.contributor.authorAlba Carranza, María Dolores
dc.contributor.authorValiente Barroso, Rafael 
dc.contributor.authorPerdigón Aller, Ana Carmen 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-03-08T18:52:14Z
dc.date.available2020-02-29T03:45:15Z
dc.date.issued2019-02-20
dc.identifier.issn1944-8252
dc.identifier.issn1944-8244
dc.identifier.otherMAT2015-63929-Res_ES
dc.identifier.otherMAT2015-69508-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/15847
dc.description.abstractIsolation of high-level radioactive waste (HLW) in deep geological repositories (DGR) through a multibarrier concept is the most accepted approach to ensure long-term safety. Clay minerals are one of the most promising materials to be used as engineered barriers. In particular, high charge micas, as components of the engineered barrier, show superselectivity for some radioactive isotopes and a large adsorption capacity, which is almost twice that of the other low charge aluminosilicates. In addition, high charge micas are optimum candidates for decontamination of nuclear waste through two different mechanisms; namely an ion exchange reaction and a nonreversible mechanism involving the formation of new stable crystalline phases under hydrothermal conditions. In this work, we report a new in situ optical sensor based on the incorporation of Eu3+ in these high charge micas for tracking the long-term physical-chemical behavior of HLW contaminants in DRG under mild hydrothermal conditions. The incorporation of Eu3+ into the interlayer space of the mica originates a well resolved green and red luminescence, from both the 5D1 and 5D0 excited states, respectively. The formation of new crystalline phases under hydrothermal conditions involves important changes in the Eu3+ emission spectra and lifetime. The most interesting features of Eu3+ luminescence to be used as an optical sensor are (1) the presence or absence of the Eu3+ green emission from the 5D1 excited state, (2) the energy shift of the 5D0 → 7F0 transition, (3) the crystal-field splitting of the 7F1 Eu3+ level, and (4) the observed luminescence lifetimes, which are directly related to the interaction mechanisms between the lanthanide ions and the silicate network.es_ES
dc.description.sponsorshipFunding from projects MAT2015-63929-R, MAT2015-69508-P, PI16/00496, and NVAL16/17-IDIVAL is gratefully acknowledged.es_ES
dc.format.extent30 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/articlesonrequest/AOR-DCpmY6sTf94NGAnIbTc5es_ES
dc.sourceACS Applied Materials and Interfaces, 2019, 11(7), 7559-7565es_ES
dc.subject.otherEuropium disilicatees_ES
dc.subject.otherEuropium luminescencees_ES
dc.subject.otherHigh charge micases_ES
dc.subject.otherRadioactive wastees_ES
dc.subject.otherSurface interactiones_ES
dc.titleEu3+ luminescence in high charge mica: an in situ probe for the encapsulation of radioactive waste in geological repositorieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acsami.8b20030es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acsami.8b20030
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo