Mostrar el registro sencillo

dc.contributor.authorStan, Diana 
dc.contributor.authorVázquez, Juan Luis
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-03-08T10:53:14Z
dc.date.available2019-03-08T10:53:14Z
dc.date.issued2014
dc.identifier.issn0036-1410
dc.identifier.issn1095-7154
dc.identifier.urihttp://hdl.handle.net/10902/15841
dc.description.abstractAbstract.We study the propagation properties of nonnegative and bounded solutions of theclass of reaction-diffusion equations with nonlinear fractional diffusion:ut+(−Δ)s(um)=f(u). Forall 0<s<1andm>mc=(N−2s)+/N, we consider the solution of the initial-value problemwith initial data having fast decay at infinity and prove that its level sets propagate exponentiallyfast in time, in contrast to the traveling wave behavior of the standard KPP case, which correspondsto puttings=1,m=1,andf(u)=u(1−u). The proof of this fact uses as an essential ingredientthe recently established decay properties of the self-similar solutions of the purely diffusive equation,ut+(−Δ)sum=0es_ES
dc.format.extent35 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© Society for Industrial and Applied Mathematics (SIAM)es_ES
dc.sourceSIAM journal on mathematical analysis, Vol. 46, No. 5, pp. 3241-3276es_ES
dc.titleThe fisher-kpp equation with nonlinear fractional diffusiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1137/130918289es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1137/130918289
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo