The fisher-kpp equation with nonlinear fractional diffusion
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/15841DOI: 10.1137/130918289
ISSN: 0036-1410
ISSN: 1095-7154
Registro completo
Mostrar el registro completo DCFecha
2014Derechos
© Society for Industrial and Applied Mathematics (SIAM)
Publicado en
SIAM journal on mathematical analysis, Vol. 46, No. 5, pp. 3241-3276
Editorial
Society for Industrial and Applied Mathematics
Enlace a la publicación
Resumen/Abstract
Abstract.We study the propagation properties of nonnegative and bounded solutions of theclass of reaction-diffusion equations with nonlinear fractional diffusion:ut+(−Δ)s(um)=f(u). Forall 0<s<1andm>mc=(N−2s)+/N, we consider the solution of the initial-value problemwith initial data having fast decay at infinity and prove that its level sets propagate exponentiallyfast in time, in contrast to the traveling wave behavior of the standard KPP case, which correspondsto puttings=1,m=1,andf(u)=u(1−u). The proof of this fact uses as an essential ingredientthe recently established decay properties of the self-similar solutions of the purely diffusive equation,ut+(−Δ)sum=0
Colecciones a las que pertenece
- D21 Artículos [417]