Mostrar el registro sencillo

dc.contributor.authorMarcano Prieto, Lourdes
dc.contributor.authorMuñoz Rodríguez, David
dc.contributor.authorMartín Rodríguez, Rosa 
dc.contributor.authorOrue Goikuria, Iñaki
dc.contributor.authorAlonso Masa, Javier 
dc.contributor.authorGarcía Prieto, Ana
dc.contributor.authorSerrano Rubio, Aida
dc.contributor.authorValencia Molina, Sergio
dc.contributor.authorAbrudan, Radu Marius
dc.contributor.authorFernández Barquín, Luis 
dc.contributor.authorGarcía Arribas, Alfredo
dc.contributor.authorMuela Blázquez, Alicia
dc.contributor.authorFernández Gubieda, María Luisa
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-03-07T14:48:27Z
dc.date.available2019-03-07T14:48:27Z
dc.date.issued2018-04-05
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.otherMAT2014-55049-C2-Res_ES
dc.identifier.otherMAT2017-83631-C3-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/15837
dc.description.abstractMagnetotactic bacteria synthesize a chain of magnetic nanoparticles, called magnetosome chain, used to align and swim along the geomagnetic field lines. In particular, Magnetospirillum gryphiswaldense biomineralize magnetite, Fe3O4. Growing this species in a Co-supplemented medium, Co-doped magnetite is obtained, tailoring in this way the magnetic properties of the magnetosome chain. Combining structural and magnetic techniques such as transmission electron microscopy, energy-dispersive x-ray spectroscopy, X-ray absorption near edge structure, and X-ray magnetic circular dichroism, we determine that 1% of Co2+ substitutes Fe2+ located in octahedral places in the magnetite, thus increasing the coercive field. In the framework of the Stoner-Wohlfarth model, we have analyzed the evolution of the hysteresis loops as a function of temperature determining the different magnetic anisotropy contributions and their evolution with temperature. In contrast with the control magnetosome chains, whose effective anisotropy is uniaxial in the whole temperature range from 300 to 5 K, the effective anisotropy of Codoped magnetosome chains changes appreciably with temperature, from uniaxial down to 150 K, through biaxial down to 100 K, to triaxial below 100 K.es_ES
dc.description.sponsorshipL.M. acknowledges the Basque Government for her fellowship (PRE_2015_1_0130). We acknowledge the technical and human support provided by SGIker (UPV/EHU). Funding from the Spanish Government (project nos. MAT2014-55049-C2-R and MAT2017-83631-C3-R) and Basque Government (project n. IT711-13) is acknowledged. We thank the ESRF (CRG BM25 beamline-SpLine) and HZB for the allocation of synchrotron radiation beamtime and funding under the project CALIPSOplus (Grant Agreement 730872) from the EU Framework Programme for Research and Innovation HORIZON 2020. We thank R. Fernández-Pacheco for his assistance in the EDS measurements.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS under an ACS AuthorChoice Licensees_ES
dc.sourceJournal of Physical Chemistry C, 2018, 122(13), 7541-7550 - (CORRIGENDUM), 2022, 126(22), 9610es_ES
dc.titleMagnetic study of co-doped magnetosome chainses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acs.jpcc.8b01187es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acs.jpcc.8b01187
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo