Mostrar el registro sencillo

dc.contributor.authorSalomón García, Sergio
dc.contributor.authorTirnauca, Cristina 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-03-06T13:07:27Z
dc.date.available2019-03-06T13:07:27Z
dc.date.issued2018
dc.identifier.issn2504-3900
dc.identifier.otherMTM2014-55262-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/15810
dc.description.abstractABSTRACT: This work addresses the problem of human activity identification in an ubiquitous environment, where data is collected from a wide variety of sources. In our approach, after filtering noisy sensor entries, we learn user?s behavioral patterns and activities? sensor patterns through the construction of weighted finite automata and regular expressions respectively, and infer the inhabitant?s position for each activity through frequency distribution of floor sensor data. Finally, we analyze the prediction results of this strategy, which obtains 90.65% accuracy for the test data.+es_ES
dc.description.sponsorshipThis research was funded by Ministerio de Ciencia e Innovación (MICINN), Spain grant number MTM2014-55262-P and by Sociedad para el Desarrollo Regional de Cantabria (SODERCAN) grant number TI16IN-007.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceProceedings 2018, 2(19), 1263es_ES
dc.titleHuman Activity Recognition through Weighted Finite Automataes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/proceedings2191263
dc.type.versionsubmittedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International