dc.contributor.author | Salomón García, Sergio | |
dc.contributor.author | Tirnauca, Cristina | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2019-03-06T13:07:27Z | |
dc.date.available | 2019-03-06T13:07:27Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 2504-3900 | |
dc.identifier.other | MTM2014-55262-P | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/15810 | |
dc.description.abstract | ABSTRACT: This work addresses the problem of human activity identification in an ubiquitous environment, where data is collected from a wide variety of sources. In our approach, after filtering noisy sensor entries, we learn user?s behavioral patterns and activities? sensor patterns through the construction of weighted finite automata and regular expressions respectively, and infer the inhabitant?s position for each activity through frequency distribution of floor sensor data. Finally, we analyze the prediction results of this strategy, which obtains 90.65% accuracy for the test data.+ | es_ES |
dc.description.sponsorship | This research was funded by Ministerio de Ciencia e Innovación (MICINN), Spain grant number
MTM2014-55262-P and by Sociedad para el Desarrollo Regional de Cantabria (SODERCAN) grant number
TI16IN-007. | es_ES |
dc.format.extent | 11 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | Attribution 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Proceedings 2018, 2(19), 1263 | es_ES |
dc.title | Human Activity Recognition through Weighted Finite Automata | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.3390/proceedings2191263 | |
dc.type.version | submittedVersion | es_ES |