Mostrar el registro sencillo

dc.contributor.authorCuesta Jiménez, Arturo 
dc.contributor.authorAlvear Portilla, Manuel Daniel 
dc.contributor.authorAbreu Menéndez, Orlando Víctor 
dc.contributor.authorAlonso Gutiérrez, Virginia 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-02-08T08:02:56Z
dc.date.available2019-05-31T02:45:13Z
dc.date.issued2018-05
dc.identifier.issn0015-2684
dc.identifier.issn1572-8099
dc.identifier.otherBIA2015-64866-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/15683
dc.description.abstractWe propose a method for assessing the accuracy of pseudo-random number sampling methods for evacuation modelling purposes. It consists of a systematic comparison between experimental and generated distributions. The calculated weighted relative error (Ew_rel) is based on the statistical parameters as central moments (mean, standard deviation, skewness and kurtosis) to shape the distribution. The case study involves the Box?Muller transform, the Kernel-Epanechnikov, the Kernel-Gaussian and the Piecewise linear generating samples from eight evacuation datasets fitted against normal, lognormal and uniform distributions. Keeping in mind that the Bos Muller method has two potential sources of error (i.e. distribution fitting and sampling), this method produces plausible results when generating samples from the three types of distributions (Ew_rel<0.30 for normal, lognormal and uniform distributions). We also fund that the Kernel Gaussian and the Kernel Epanechnikov methods are well accurate in generating samples from normal distributions (Ew_rel<0.1) but potentially inaccurate when generating samples from uniform and lognormal distributions (Ew_rel > 0.80). Results suggest that the Piecewise linear is the most accurate method (Ew_rel = 0.01 normal; Ew_rel = 0.04 lognormal; Ew_rel = 0.009 uniform). This method has the advantage of sampling directly from empirical datasets i.e. no previous distribution fitting is needed. While the proposed method is used here for evacuation modelling, it can be extended to other fire safety engineering applications.es_ES
dc.description.sponsorshipThe authors would like to thank the Spanish Ministry of Economy and Competitiveness for the DEFENDER Project Grant, Ref.: BIA2015-64866-R, co-financed by ERDS funds.es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights© Springer. This is a post-peer-review, pre-copyedit version of an article published in Fire Technology. The final authenticated version is available online at: https://doi.org/10.1007/s10694-017-0697-4es_ES
dc.sourceFire Technology, 2018, 54(3), 649-668es_ES
dc.subject.otherEvacuation modellinges_ES
dc.subject.otherPseudo-random number sampling methodses_ES
dc.subject.otherEmpirical evacuation dataes_ES
dc.titleA method to assess the accuracy of pseudo-random number sampling methods from evacuation datasetses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s10694-017-0697-4es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s10694-017-0697-4
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo