dc.contributor.author | Ruiz Lombera, Rubén | |
dc.contributor.author | Fuentes Cayón, Alberto | |
dc.contributor.author | Rodríguez Cobo, Luis | |
dc.contributor.author | López Higuera, José Miguel | |
dc.contributor.author | Mirapeix Serrano, Jesús María | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2019-02-05T16:46:12Z | |
dc.date.available | 2019-02-05T16:46:12Z | |
dc.date.issued | 2018-06-01 | |
dc.identifier.issn | 0733-8724 | |
dc.identifier.issn | 1558-2213 | |
dc.identifier.other | TEC2013-47264-C2-1-R | es_ES |
dc.identifier.other | TEC2016-76021-C2-2-R | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/15663 | |
dc.description.abstract | A system based on the use of artificial neural networks allowing discrimination of strain and temperature in a conventional Brillouin optical time domain analyzer setup is presented and demonstrated in this paper. This solution allows to perform an automatic discrimination of both parameters without compromising the complexity or cost of the interrogation unit. The classification results, achieved by considering a preprocessing stage with dimensionality reduction via principal component analysis and spatial filtering, improve those obtained in a previous feasibility study. | es_ES |
dc.description.sponsorship | This work was supported in part by the Projects TEC2013-47264-C2-1-R and TEC2016-76021-C2-2-R | es_ES |
dc.format.extent | 8 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE- | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.rights | © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.source | Journal of Lightwave Technology, 2018, 36(11), 2114-2121 | es_ES |
dc.subject.other | Artifical neural network | es_ES |
dc.subject.other | Distributed systems | es_ES |
dc.subject.other | Optical fiber sensors | es_ES |
dc.subject.other | Stimulated Brillouin scattering | es_ES |
dc.subject.other | Strain-temperature discrimination | es_ES |
dc.title | Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1109/JLT.2018.2805362 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1109/JLT.2018.2805362 | |
dc.type.version | acceptedVersion | es_ES |