• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Química e Ingeniería de Procesos y Recursos
    • D51 Proyectos de investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Química e Ingeniería de Procesos y Recursos
    • D51 Proyectos de investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intra-class variability in diffuse reflectance spectroscopy: application to porcine adipose tissue

    Ver/Abrir
    IntraClassVariabilit ... (1.541Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/15659
    DOI: 10.1364/BOE.9.002297
    ISSN: 2156-7085
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Fanjul Vélez, FélixAutoridad Unican; Arévalo Díaz, Laura; Arce Diego, José LuisAutoridad Unican
    Fecha
    2018-05-01
    Derechos
    © 2018 Optica Publishing Group under the terms of the Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
    Publicado en
    Biomedical Optics Express, 2018, 9(5), 2297-2303
    Editorial
    The Optical Society
    Enlace a la publicación
    https://doi.org/10.1364/BOE.9.002297
    Palabras clave
    Spectroscopy
    Tissue diagnostics
    Tissue characterization
    Optical diagnostics for medicine
    Resumen/Abstract
    Optical diffuse reflectance spectroscopy (DRS) has great potential in the study, diagnosis, and discrimination of biological tissues. Discrimination is based on massive measurements that conform training sets. These sets are then used to classify tissues according to the biomedical application. Classification accuracy depends strongly on the training dataset, which typically comes from different samples of the same class, and from different points of the same sample. The variability of these measurements is not usually considered and is assumed to be purely random, although it could greatly influence the results. In this work, spectral variations within and between samples of different animals of ex-vivo porcine adipose tissue are evaluated. Algorithms for normalization, dimensionality reduction by principal component analysis, and variability control are applied. The PC analysis shows the dataset variability, even when a variability removal algorithm is applied. The projected data appear grouped by animal in the PC space. Mahalanobis distance is calculated for every group, and an ANOVA test is performed in order to estimate the variability. The results confirm that the variability is not random and is dependent at least on the anatomical location and the specific animal. The variability magnitude is significant, particularly if the classification accuracy is needed to be high. As a consequence, it should be taken generally into account in classification problems.
    Colecciones a las que pertenece
    • D51 Artículos [155]
    • D51 Proyectos de investigación [93]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España