• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Congresos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Congresos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving graph convolutional networks with non-parametric activation functions

    Ver/Abrir
    ImprovingGraphConvol ... (459.1Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/15596
    DOI: 10.23919/EUSIPCO.2018.8553465
    ISBN: 978-90-827970-1-5
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Scardapane, Simeone; Vaerenbergh, Steven vanAutoridad Unican; Comminiello, Danielo; Uncini, Aurelio
    Fecha
    2018
    Derechos
    © EURASIP. First published in the Proceedings of the 26th European Signal Processing Conference (EUSIPCO-2018) in 2018, published by EURASIP. IEEE is granted the nonexclusive, irrevocable, royalty-free worldwide rights to publish, sell and distribute the copyrighted work in any format or media without restriction.
    Publicado en
    26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 2018, 872-876
    Editorial
    IEEE
    Enlace a la publicación
    https://doi.org/10.23919/EUSIPCO.2018.8553465
    Resumen/Abstract
    Graph neural networks (GNNs) are a class of neural networks that allow to efficiently perform inference on data that is associated to a graph structure, such as, e.g., citation networks or knowledge graphs. While several variants of GNNs have been proposed, they only consider simple nonlinear activation functions in their layers, such as rectifiers or squashing functions. In this paper, we investigate the use of graph convolutional networks (GCNs) when combined with more complex activation functions, able to adapt from the training data. More specifically, we extend the recently proposed kernel activation function, a non-parametric model which can be implemented easily, can be regularized with standard lp-norms techniques, and is smooth over its entire domain. Our experimental evaluation shows that the proposed architecture can significantly improve over its baseline, while similar improvements cannot be obtained by simply increasing the depth or size of the original GCN.
    Colecciones a las que pertenece
    • D12 Congresos [595]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España