Mostrar el registro sencillo

dc.contributor.authorVaerenbergh, Steven van 
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorElvira Arregui, Víctor
dc.contributor.authorSalvatori, Matteo
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-12-19T15:16:10Z
dc.date.available2018-12-19T15:16:10Z
dc.date.issued2018
dc.identifier.isbn978-1-5386-4658-8
dc.identifier.otherTEC2014-57402-JINes_ES
dc.identifier.urihttp://hdl.handle.net/10902/15197
dc.description.abstractIn this paper, we study the problem of locating a predefined sequence of patterns in a time series. In particular, the studied scenario assumes a theoretical model is available that contains the expected locations of the patterns. This problem is found in several contexts, and it is commonly solved by first synthesizing a time series from the model, and then aligning it to the true time series through dynamic time warping. We propose a technique that increases the similarity of both time series before aligning them, by mapping them into a latent correlation space. The mapping is learned from the data through a machine-learning setup. Experiments on data from nondestructive testing demonstrate that the proposed approach shows significant improvements over the state of the art.es_ES
dc.description.sponsorshipThe work of Steven Van Vaerenbergh was supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain under grant TEC2014-57402-JIN (PRISMA). The work of Víctor Elvira was supported by the Agence Nationale de la Recherche of France under PISCES project (ANR-17-CE40-0031-01).es_ES
dc.format.extent5 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, 2711-2715es_ES
dc.subject.otherPattern localizationes_ES
dc.subject.otherDynamic time warpinges_ES
dc.subject.otherCanonical correlation analysises_ES
dc.subject.otherTime serieses_ES
dc.subject.otherAlignmentes_ES
dc.titlePattern localization in time series through signal-to-model alignment in latent spacees_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/ICASSP.2018.8461890es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/ICASSP.2018.8461890
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo