Mostrar el registro sencillo

dc.contributor.authorRamírez García, David
dc.contributor.authorRomero, Daniel
dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorLópez Valcarce, Roberto
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-12-19T14:37:39Z
dc.date.available2018-12-19T14:37:39Z
dc.date.issued2018
dc.identifier.isbn978-1-5386-4658-8
dc.identifier.otherTEC2013-41718-Res_ES
dc.identifier.otherTEC2015-69648-REDCes_ES
dc.identifier.otherTEC2016-81900-REDT/AEIes_ES
dc.identifier.otherTEC2015-69868-C2-1-Res_ES
dc.identifier.otherTEC2016-76409-C2-2-Res_ES
dc.identifier.otherTEC2016-75067-C4-4-Res_ES
dc.identifier.otherTEC2017-86921-C2-1-Res_ES
dc.identifier.otherTEC2017-86921-C2-2-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/15196
dc.description.abstractThis work addresses the problem of determining whether two multivariate random time series have the same power spectral density (PSD), which has applications, for instance, in physical-layer security and cognitive radio. Remarkably, existing detectors for this problem do not usually provide any kind of optimality. Thus, we study here the existence under the Gaussian assumption of optimal invariant detectors for this problem, proving that the uniformly most powerful invariant test (UMPIT) does not exist. Thus, focusing on close hypotheses, we show that the locally most powerful invariant test (LMPIT) only exists for univariate time series. In the multivariate case, we prove that the LMPIT does not exist. However, this proof suggests two LMPIT-inspired detectors, one of which outperforms previously proposed approaches, as computer simulations show.es_ES
dc.description.sponsorshipThis work was partly supported by the Spanish MINECO grants OTOSIS (TEC2013-41718-R), COMONSENS Network (TEC2015-69648-REDC) and KERMES Network (TEC2016-81900-REDT/AEI); by the Spanish MINECO and the European Commission (ERDF) grants ADVENTURE (TEC2015-69868-C2-1-R), WINTER (TEC2016-76409-C2-2-R), CARMEN (TEC2016-75067-C4-4-R) and CAIMAN (TEC2017-86921-C2-1-R and TEC2017-86921-C2-2-R); by the Comunidad de Madrid grant CASI-CAM-CM (S2013/ICE-2845); by the Xunta de Galicia and ERDF grants GRC2013/009, R2014/037 and ED431G/04 (Agrupación Estratéxica Consolidada de Galicia accreditation 2016-2019); by the SODERCAN and ERDF grant CAIMAN (12.JU01.64661); and by the Research Council of Norway grant FRIPRO TOPPFORSK (250910/F20).es_ES
dc.format.extent5 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, 3929-3933es_ES
dc.subject.otherGeneralized likelihood ratio test (GLRT)es_ES
dc.subject.otherHypothesis testes_ES
dc.subject.otherLocally most powerful invariant test (LMPIT)es_ES
dc.subject.otherPower spectral density (PSD)es_ES
dc.subject.otherUniformly most powerful invariant test (UMPIT)es_ES
dc.titleLocally optimal invariant detector for testing equality of two power spectral densitieses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/ICASSP.2018.8462683es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/ICASSP.2018.8462683
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo