Mostrar el registro sencillo

dc.contributor.authorFioravanti Villanueva, Mario Alfredo 
dc.contributor.authorSendra, J. Rafael
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-12-19T10:08:13Z
dc.date.available2018-12-19T10:08:13Z
dc.date.issued2016-06-23
dc.identifier.issn0167-8396
dc.identifier.issn1879-2332
dc.identifier.otherMTM2011-25816-C02-(01,02)es_ES
dc.identifier.urihttp://hdl.handle.net/10902/15192
dc.description.abstractIn this paper, a general theoretical study, from the perspective of the algebraic geometry, of the untrimmed bisector of two real algebraic plane curves is presented. The curves are considered in C2, and the real bisector is obtained by restriction to R2. If the implicit equations of the curves are given, the equation of the bisector is obtained by projection from a variety contained in C7, called the incidence variety, into C2. It is proved that all the components of the bisector have dimension 1. A similar method is used when the curves are given by parametrizations, but in this case, the incidence variety is in C5. In addition, a parametric representation of the bisector is introduced, as well as a method for its computation. Our parametric representation extends the representation in Farouki and Johnstone (1994b) to the case of rational curves.es_ES
dc.format.extent19 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.sourceComputer Aided Geometric Desig, june 2016es_ES
dc.titleAlgebro-geometric analysis of bisectors of two algebraic plane curveses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1016/j.cagd.2016.06.004es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.cagd.2016.06.004
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo