• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Algebro-geometric analysis of bisectors of two algebraic plane curves

    Ver/Abrir
    bisectores V15.pdf (417.5Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/15192
    DOI: 10.1016/j.cagd.2016.06.004
    ISSN: 0167-8396
    ISSN: 1879-2332
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Fioravanti Villanueva, Mario AlfredoAutoridad Unican; Sendra, J. Rafael
    Fecha
    2016-06-23
    Derechos
    © 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
    Publicado en
    Computer Aided Geometric Desig, june 2016
    Editorial
    Elsevier
    Enlace a la publicación
    http://dx.doi.org/10.1016/j.cagd.2016.06.004
    Resumen/Abstract
    In this paper, a general theoretical study, from the perspective of the algebraic geometry, of the untrimmed bisector of two real algebraic plane curves is presented. The curves are considered in C2, and the real bisector is obtained by restriction to R2. If the implicit equations of the curves are given, the equation of the bisector is obtained by projection from a variety contained in C7, called the incidence variety, into C2. It is proved that all the components of the bisector have dimension 1. A similar method is used when the curves are given by parametrizations, but in this case, the incidence variety is in C5. In addition, a parametric representation of the bisector is introduced, as well as a method for its computation. Our parametric representation extends the representation in Farouki and Johnstone (1994b) to the case of rational curves.
    Colecciones a las que pertenece
    • D21 Proyectos de Investigación [326]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España