• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive clustering algorithm for cooperative spectrum sensing in mobile environments

    Ver/Abrir
    AdaptiveClusteringAl ... (413.5Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/15061
    DOI: 10.1109/ICASSP.2018.8461468
    ISBN: 978-1-5386-4658-8
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pérez Arriaga, JesúsAutoridad Unican; Santamaría Caballero, Luis IgnacioAutoridad Unican
    Fecha
    2018
    Derechos
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, 2611-2615
    Editorial
    IEEE
    Enlace a la publicación
    https://doi.org/10.1109/ICASSP.2018.8461468
    Palabras clave
    Cooperative spectrum sensing
    Energy detection
    Clustering
    Likelihood ratio test
    Fading channels
    Resumen/Abstract
    In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a centralized spectrum sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a composite hypothesis testing problem. The unknown parameters are estimated by means of an adaptive clustering algorithm that operates over the most recent energy estimates reported by the sensors to the fusion center. The algorithm does not require all sensors to report their energy estimates, which makes it suited to be used with any sensor selection strategy (active sensing). Simulation results show the feasibility and efficiency of the method in realistic slow-fading environments.
    Colecciones a las que pertenece
    • D12 Congresos [593]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España