dc.contributor.author | Iturbide Martínez de Albéniz, Maialen | |
dc.contributor.author | | |
dc.contributor.author | Herrera García, Sixto | |
dc.contributor.author | Baño Medina, Jorge | |
dc.contributor.author | Fernández Fernández, Jesús (matemático) | |
dc.contributor.author | Frías Domínguez, María Dolores | |
dc.contributor.author | García Manzanas, Rodrigo | |
dc.contributor.author | San Martín Segura, Daniel | |
dc.contributor.author | Cimadevilla Álvarez, Ezequiel | |
dc.contributor.author | Cofiño González, Antonio Santiago | |
dc.contributor.author | Gutiérrez Llorente, José Manuel | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2018-11-19T18:56:04Z | |
dc.date.available | 2020-09-01T02:45:07Z | |
dc.date.issued | 2018-09 | |
dc.identifier.issn | 1364-8152 | |
dc.identifier.issn | 1873-6726 | |
dc.identifier.other | CGL2015-66583-R | es_ES |
dc.identifier.other | CGL2016-79210-R | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/14999 | |
dc.description.abstract | Climate-driven sectoral applications commonly require different types of climate data (e.g. observations, re-analysis, climate change projections) from different providers. Data access, harmonization and post-processing(e.g. bias correction) are time-consuming error-prone tasks requiring different specialized software tools at eachstage of the data workflow, thus hindering reproducibility. Here we introduce climate4R, an R-based climateservices oriented framework tailored to the needs of the vulnerability and impact assessment community thatintegrates in the same computing environment harmonized data access, post-processing, visualization and aprovenance metadata model for traceability and reproducibility of results. climate4R allows accessing localand remote (OPeNDAP) data sources, such as the Santander User Data Gateway (UDG), a THREDDS-basedservice including a wide catalogue of popular datasets (e.g. ERA-Interim, CORDEX, etc.). This provides a uniquecomprehensive open framework for end-to-end sectoral reproducible applications. All the packages, data anddocumentation for reproducing the experiments in this paper are available from http://www.meteo.unican.es/climate4R. | es_ES |
dc.description.sponsorship | This work has been funded by the Spanish R+D Program of theMinistry of Economy and Competitiveness, through grants MULTI-SDM(CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded byERDF/FEDER. We would like to thank the two anonymous reviewersfor their valuable suggestions and comments. | es_ES |
dc.format.extent | 12 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier Ltd | es_ES |
dc.rights | Attribution 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Environmental Modelling & Software
Volume 111, January 2019, Pages 42-54 | es_ES |
dc.title | The R-based climate4R open framework for reproducible climate data access and post-processing | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.envsoft.2018.09.009 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1016/j.envsoft.2018.09.009 | |
dc.type.version | acceptedVersion | es_ES |