Mostrar el registro sencillo

dc.contributor.authorIturbide Martínez de Albéniz, Maialen es_ES
dc.contributor.authorBedia Jiménez, Joaquín es_ES
dc.contributor.authorGutiérrez Llorente, José Manueles_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-11-12T17:51:14Z
dc.date.available2020-03-01T03:45:10Z
dc.date.issued2018-03es_ES
dc.identifier.issn0921-8181es_ES
dc.identifier.issn1872-6364es_ES
dc.identifier.urihttp://hdl.handle.net/10902/14967
dc.description.abstractSpecies Distribution Models (SDMs) constitute an important tool to assist decision-making in environmental conservation and planning. A popular application of these models is the projection of species distributions under climate change conditions. Yet there are still a range of methodological SDM factors which limit the transferability of these models, contributing significantly to the overall uncertainty of the resulting projections. An important source of uncertainty often neglected in climate change studies comes from the use of background data (a.k.a. pseudo-absences) for model calibration. Here, we study the sensitivity to pseudo-absence sampling as a determinant factor for SDM stability and transferability under climate change conditions, focusing on European wide projections of Quercus robur as an illustrative case study. We explore the uncertainty in future projections derived from ten pseudo-absence realizations and three popular SDMs (GLM, Random Forest and MARS). The contribution of the pseudo-absence realization to the uncertainty was higher in peripheral regions and clearly differed among the tested SDMs in the whole study domain, being MARS the most sensitive ? with projections differing up to a 40% for different realizations ? and GLM the most stable. As a result we conclude that parsimonious SDMs are preferable in this context, avoiding complex methods (such as MARS) which may exhibit poor model transferability. Accounting for this new source of SDM-dependent uncertainty is crucial when forming multi-model ensembles to undertake climate change projections.es_ES
dc.description.sponsorshipWe acknowledge the ENSEMBLES project, funded by the European Commission's EU 6th Framework Programme through contract GOCE-CT-2003-505539. The first author has a research contract from the EU-funded project FP7- SEC-2013-1 (INTACT).es_ES
dc.format.extent41 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceGlobal and Planetary Change Volume 166, July 2018, Pages 19-29es_ES
dc.titleBackground sampling and transferability of species distribution model ensembles under climate changees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.gloplacha.2018.03.008es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.gloplacha.2018.03.008es_ES
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International