Mostrar el registro sencillo

dc.contributor.authorSoriano Portilla, Álvaro
dc.contributor.authorGorri Cirella, Daniel 
dc.contributor.authorUrtiaga Mendia, Ana María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-10-17T12:28:44Z
dc.date.available2021-01-31T03:45:15Z
dc.date.issued2019-01-08
dc.identifier.issn1383-5866
dc.identifier.issn1873-3794
dc.identifier.otherCTM2013-44081-Res_ES
dc.identifier.otherCTM2016-75509-Res_ES
dc.identifier.otherCTQ2016-75158-Res_ES
dc.identifier.otherCTQ2015-71650-RDTes_ES
dc.identifier.urihttp://hdl.handle.net/10902/14841
dc.description.abstractOne of the key points for the large-scale implementation of electrochemical water treatment technologies lies in the need of reducing the energy consumption. The present work analyzes the removal of persistent perfluorohexanoic acid (PFHxA, 204 mg L−1) from industrial process waters using a strategy that combines membrane pre-concentration followed by electrooxidation of the concentrate. A mathematical model describing the nanofiltration (NF) system was developed and complemented with new and background experimental data of PFHxA and ion species rejections and total permeate flux through the NF270 and NF90 membranes. Similarly, the kinetics of PFHxA electrolysis on boron doped diamond anodes was determined at laboratory scale. Later, the model was used to simulate the NF-ELOX integrated process, where a commercial spiral wound unit (membrane area 7.6 m2) was implemented and the electrooxidation unit was scaled-up to pilot plant (anode area 1.05 m2). The obtained energy savings depended on a combination of the target PFHxA removal ratio at the end of the treatment train, the separation performance of the commercial membrane and the reduction of the electrolyte ohmic resistance in the electrooxidation stage, that was attained as a result of the increase of salts content in the concentrate. Only the tight NF90 membrane allowed to achieve high (99%) PFHxA removal ratios in the integrated NF-ELOX process, and the specific energy consumption was estimated at 11.6 kWh m−3, 59.2% less than when electrolysis alone was applied. Still, the electrolysis is the most energy demanding step, with 85.9% contribution to the total energy consumption. The strategy of combining membrane pre-concentration with electrochemical degradation could be extended to the treatment of other highly persistent organic compounds.es_ES
dc.description.sponsorshipFinancial support from projects CTM2013-44081-R, CTM2016-75509-R and CTQ2016-75158-R (MINECO, SPAIN-FEDER 2014–2020) and to the Spanish Excellence Network E3TECH (CTQ2015-71650-RDT) is gratefully acknowledged.es_ES
dc.format.extent33 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSeparation and Purification Technology, 2019, 208, 160-168es_ES
dc.subject.otherBDD electrolysises_ES
dc.subject.otherEnergy minimizationes_ES
dc.subject.otherNanofiltrationes_ES
dc.subject.otherProcess integrationes_ES
dc.subject.otherPerfluorohexanoic acides_ES
dc.titleMembrane preconcentration as an efficient tool to reduce the energy consumption of perfluorohexanoic acid electrochemical treatmentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.seppur.2018.03.050es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.seppur.2018.03.050
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license