Mostrar el registro sencillo

dc.contributor.authorNemati, Hassan M.
dc.contributor.authorLaso Pérez, Alberto 
dc.contributor.authorMañana Canteli, Mario 
dc.contributor.authorSant'Anna, Anita
dc.contributor.authorNowaczyk, Slawomir
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-10-04T13:11:18Z
dc.date.available2018-10-04T13:11:18Z
dc.date.issued2018-08-02
dc.identifier.issn1996-1073
dc.identifier.otherENE2013-42720-Res_ES
dc.identifier.otherRETOS RTC-2015-3795-3es_ES
dc.identifier.urihttp://hdl.handle.net/10902/14792
dc.description.abstractThe maximum current that an overhead transmission line can continuously carry depends on external weather conditions, most commonly obtained from real-time streaming weather sensors. The accuracy of the sensor data is very important in order to avoid problems such as overheating. Furthermore, faulty sensor readings may cause operators to limit or even stop the energy production from renewable sources in radial networks. This paper presents a method for detecting and replacing sequences of consecutive faulty data originating from streaming weather sensors. The method is based on a combination of (a) a set of constraints obtained from derivatives in consecutive data, and (b) association rules that are automatically generated from historical data. In smart grids, a large amount of historical data from different weather stations are available but rarely used. In this work, we show that mining and analyzing this historical data provides valuable information that can be used for detecting and replacing faulty sensor readings. We compare the result of the proposed method against the exponentially weighted moving average and vector autoregression models. Experiments on data sets with real and synthetic errors demonstrate the good performance of the proposed method for monitoring weather sensors.es_ES
dc.description.sponsorshipThis research was partially funded by Spanish Government under Spanish R+D initiative with reference ENE2013-42720-R and RETOS RTC-2015-3795-3.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEnergies, 2018, 11(8), 2007es_ES
dc.subject.otherSmart gridses_ES
dc.subject.otherDynamic line ratinges_ES
dc.subject.otherStream data cleaninges_ES
dc.subject.otherData mininges_ES
dc.titleStream data cleaning for dynamic line rating applicationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/en11082007
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International