Mostrar el registro sencillo

dc.contributor.authorGil Gómez, Amparo 
dc.contributor.authorSegura Sala, José Javier 
dc.contributor.authorTemme, N.M.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-08-13T15:09:56Z
dc.date.available2019-01-01T03:45:11Z
dc.date.issued2018-01
dc.identifier.issn0022-2526
dc.identifier.issn1467-9590
dc.identifier.otherMTM2015-67142-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/14257
dc.description.abstractAsymptotic approximations to the zeros of Hermite and Laguerre polynomials are given, together with methods for obtaining the coefficients in the expansions. These approximations can be used as a stand-alone method of computation of Gaussian quadratures for high enough degrees, with Gaussian weights computed from asymptotic approximations for the orthogonal polynomials. We provide numerical evidence showing that for degrees greater than 100, the asymptotic methods are enough for a double precision accuracy computation (15-16 digits) of the nodes and weights of the Gauss-Hermite and Gauss-Laguerre quadratures.es_ES
dc.description.sponsorshipThe authors acknowledge financial support from Ministerio de Economía y Competitividad, project MTM2015-67142-P (MINECO/FEDER, UE).es_ES
dc.format.extent34 p.es_ES
dc.language.isoenges_ES
dc.publisherBlackwell Publishing Ltdes_ES
dc.rights© Wileyes_ES
dc.sourceStudies in Applied Mathematics 140:298-332es_ES
dc.titleAsymptotic Approximations to the Nodes and Weights of Gauss-Hermite and Gauss-Laguerre Quadratureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://onlinelibrary.wiley.com/doi/abs/10.1111/sapm.12201es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1111/sapm.12201
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo