Asymptotic Approximations to the Nodes and Weights of Gauss-Hermite and Gauss-Laguerre Quadratures
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/14257DOI: 10.1111/sapm.12201
ISSN: 0022-2526
ISSN: 1467-9590
Registro completo
Mostrar el registro completo DCFecha
2018-01Derechos
© Wiley
Publicado en
Studies in Applied Mathematics 140:298-332
Editorial
Blackwell Publishing Ltd
Enlace a la publicación
Resumen/Abstract
Asymptotic approximations to the zeros of Hermite and Laguerre polynomials are given, together with methods for obtaining the coefficients in the expansions. These approximations can be used as a stand-alone method of computation of Gaussian quadratures for high enough degrees, with Gaussian weights computed from asymptotic approximations for the orthogonal polynomials. We provide numerical evidence showing that for degrees greater than 100, the asymptotic methods are enough for a double precision accuracy computation (15-16 digits) of the nodes and weights of the Gauss-Hermite and Gauss-Laguerre quadratures.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]