• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultraquadrics associated to affine and projective automorphisms

    Ver/Abrir
    UltraquadricsAssocia ... (354.0Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/13923
    DOI: 10.1007/s00200-014-0236-1
    ISSN: 0938-1279
    ISSN: 1432-0622
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Recio Muñiz, TomásAutoridad Unican; Tabera Alonso, Luis FelipeAutoridad Unican; Sendra, J.R.; Villarino, C.
    Fecha
    2014-11
    Derechos
    © Springer. This is a post-peer-review, pre-copyedit version of an article published in Applicable Algebra in Engineering, Communication and Computing. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00200-014-0236-1
    Publicado en
    Applicable Algebra in Engineering, Communication and Computing, 2014, 25(6), 431-445
    Editorial
    Springer Verlag
    Enlace a la publicación
    http://dx.doi.org/10.1007/s00200-014-0236-1
    Resumen/Abstract
    The concept of ultraquadric has been introduced by the authors as a tool to algorithmically solve the problem of simplifying the coefficients of a given rational parametrization in K(a) (t1, ..., tn) of an algebraic variety of arbitrary dimension over a field extension K(a). In this context, previous work in the one-dimensional case has shown the importance of mastering the geometry of 1-dimensional ultraquadrics (hypercircles). In this paper we study, for the first time, the properties of some higher dimensional ultraquadrics, namely, those associated to automorphisms in the field K(a) (t1, ..., tn), defined by linear rational (with common denominator) or by polynomial (with inverse also polynomial) coordinates. We conclude, among many other observations, that ultraquadrics related to polynomial automorphisms can be characterized as varieties K-isomorphic to linear varieties, while ultraquadrics arising from projective automorphisms are isomorphic to the Segre embedding of a blowup of the projective space along an ideal and, in some general case, linearly isomorphic to a toric variety. We conclude with some further details about the real-complex, 2-dimensional case, showing, for instance, that this family of ultraquadrics can be presented as a collection of ruled surfaces described by pairs of hypercircles.
    Colecciones a las que pertenece
    • D21 Artículos [417]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España