Mostrar el registro sencillo

dc.contributor.authorAghanim, Nabilaes_ES
dc.contributor.authorBarreiro Vilas, Rita Belén es_ES
dc.contributor.authorCurto Martín, Andréses_ES
dc.contributor.authorDiego Rodríguez, José María es_ES
dc.contributor.authorGonzález-Nuevo González, Joaquínes_ES
dc.contributor.authorHerranz Muñoz, Diego es_ES
dc.contributor.authorLópez-Caniego Alcarria, Marcoses_ES
dc.contributor.authorMartínez González, Enriquees_ES
dc.contributor.authorToffolatti, Luigies_ES
dc.contributor.authorVielva Martínez, Patricio es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-06-15T11:24:33Z
dc.date.available2018-06-15T11:24:33Z
dc.date.issued2014-11es_ES
dc.identifier.issn0004-6361es_ES
dc.identifier.issn1432-0746es_ES
dc.identifier.urihttp://hdl.handle.net/10902/13912
dc.description.abstractThis paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to –20 dB at 30 and 44?GHz, and down to –25 dB at 70?GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44?GHz, respectively (at l ˜ 600), and 0.7% at 70?GHz (at l ˜ 1000).es_ES
dc.format.extent22 p.es_ES
dc.language.isoenges_ES
dc.publisherEDP Scienceses_ES
dc.rights© ESO, 2014*
dc.sourceA&A 571, A4 (2014)es_ES
dc.titlePlanck 2013 results. IV. Low Frequency Instrument beams and window functionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1051/0004-6361/201321544es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1051/0004-6361/201321544es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo