Mostrar el registro sencillo

dc.contributor.authorEtayo Gordejuela, Fernando es_ES
dc.contributor.authorSantamaría Sánchez, Rafaeles_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-06-11T07:27:25Z
dc.date.available2018-06-11T07:27:25Z
dc.date.issued2016es_ES
dc.identifier.issn0044-8753es_ES
dc.identifier.issn1212-5059es_ES
dc.identifier.urihttp://hdl.handle.net/10902/13818
dc.description.abstractWe study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of (J2 = ±1)-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.es_ES
dc.format.extent45 p.es_ES
dc.language.isoenges_ES
dc.publisherMasarykova Universitaes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArchivum Mathematicum, 2016, 52, 159-203es_ES
dc.titleDistinguished connections on (J2 = ±1)-metric manifoldses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.5817/AM2016-3-159es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.5817/AM2016-3-159es_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España