Mostrar el registro sencillo

dc.contributor.authorGutiérrez Vela, Yael 
dc.contributor.authorOrtiz Márquez, María Dolores 
dc.contributor.authorSaiz Vega, José María 
dc.contributor.authorGonzález Fernández, Francisco 
dc.contributor.authorEveritt, Henry O.
dc.contributor.authorMoreno Gracia, Fernando 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-06-08T08:35:09Z
dc.date.available2018-06-08T08:35:09Z
dc.date.issued2017-12
dc.identifier.issn2079-4991
dc.identifier.otherFIS2013-45854-P
dc.identifier.urihttp://hdl.handle.net/10902/13811
dc.description.abstractFor applications of surface-enhanced spectroscopy and photocatalysis, the ultraviolet (UV) plasmonic behavior and charge distribution within rhodium nanocubes is explored by a detailed numerical analysis. The strongest plasmonic hot-spots and charge concentrations are located at the corners and edges of the nanocubes, exactly where they are the most spectroscopically and catalytically active. Because intense catalytic activity at corners and edges will reshape these nanoparticles, distortions of the cubical shape, including surface concavity, surface convexity, and rounded corners and edges, are also explored to quantify how significantly these distortions deteriorate their plasmonic and photocatalytic properties. The fact that the highest fields and highest carrier concentrations occur in the corners and edges of Rh nanocubes (NCs) confirms their tremendous potential for plasmon-enhanced spectroscopy and catalysis. It is shown that this opportunity is fortuitously enhanced by the fact that even higher field and charge concentrations reside at the interface between the metal nanoparticle and a dielectric or semiconductor support, precisely where the most chemically active sites are located.es_ES
dc.description.sponsorshipThis research has been supported by MICINN (Spanish Ministry of Science and Innovation, project FIS2013-45854-P). Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-17-2-0023. Y.G. wants to thank the University of Cantabria for her FPU (formación del profesorado universitario) grantes_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open Access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNanomaterials, 2017, 7(12), 425es_ES
dc.titleThe UV plasmonic behavior of distorted rhodium nanocubeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/nano7120425es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//FIS2013-45854-P/ES/SOBRE EL COMPORTAMIENTO ELECTROMAGNETICO DE SISTEMAS DE PEQUEÑAS PARTICULAS. METALES PARA EL UV Y DIELECTRICOS CON ALTO INDICE DE REFRACCION/es_ES
dc.identifier.DOI10.3390/nano7120425
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open Access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open Access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license