Mostrar el registro sencillo

dc.contributor.authorGómez Gandarillas, Delfina 
dc.contributor.authorLobo Hidalgo, Miguel 
dc.contributor.authorPérez Martínez, María Eugenia 
dc.contributor.authorPodolskii, A.V.
dc.contributor.authorShaposhnikova, T.A.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-06-07T17:13:24Z
dc.date.available2018-06-07T17:13:24Z
dc.date.issued2018
dc.identifier.issn1292-8119
dc.identifier.issn1262-3377
dc.identifier.otherMTM2013-44883-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/13808
dc.description.abstractWe address homogenization problems for variational inequalities issue from unilateral con-straints for the p-Laplacian posed in perforated domains of Rn, with n 3 and p 2 [2; n]. " is a small parameter which measures the periodicity of the structure while a" " measures the size of the perforations. We impose constraints for solutions and their uxes (associated with the p-Laplacian) on the boundary of the perforations. These constraints imply that the solution is positive and that the ux is bounded from above by a negative, nonlinear monotonic function of the solution multiplied by a parameter " which may be very large, namely, " ! 1 as " ! 0. We rst consider the case where p < n and the domains periodically perforated by tiny balls and we obtain homogenized problems depending on the relations between the di erent parameters of the problem: p, n, ", a" and ". Critical relations for parameters are obtained which mark important changes in the behavior of the solutions. Correctors which provide improved convergence are also computed. Then, we extend the results for p = n and the case of non periodically distributed isoperimetric perforations. We make it clear that the averaged constants of the problem, the perimeter of the perforations appears for any shape.es_ES
dc.description.sponsorshipThis work has been partially supported by MINECO:MTM2013-44883-P.es_ES
dc.language.isoenges_ES
dc.publisherEDP Scienceses_ES
dc.rights© EDP Sciences; Société de Mathématiques Appliquées et Industrielles (SMAI). The original publication is available at www.esaim-cocv.orges_ES
dc.sourceESAIM. Control, optimisation and calculus of variations 1-45 ppes_ES
dc.titleUnilateral problems for the p-Laplace operator in perforated media involving large parameterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://www.esaim-cocv.org/component/article?access=doi&doi=10.1051/cocv/2017026es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1051/cocv/2017026
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo