Mostrar el registro sencillo

dc.contributor.authorSan Cristóbal Mateo, José Ramón 
dc.contributor.authorCorrea Ruiz, Francisco J. 
dc.contributor.authorGonzález Villa, María Antonia 
dc.contributor.authorDíaz Ruiz de Navamuel, Emma 
dc.contributor.authorMadariaga Domínguez, Ernesto 
dc.contributor.authorOrtega Piris, Andrés 
dc.contributor.authorLópez Soto, Sergio
dc.contributor.authorTrueba Salas, Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-05-09T11:39:13Z
dc.date.available2018-05-09T11:39:13Z
dc.date.issued2015
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10902/13666
dc.description.abstractS-curves are usually taken as expression of project progress and have become a requisite tool for project managers through the execution phase. The common methodology for predicting S-curve forecasting models is based on classifying projects into groups and producing a standard S-curve for each group using multiple linear regression techniques. Traditional regression models taken to fit individual projects require a large amount of data and make many strict assumptions regarding statistical distribution of the data. The grey system theory, however, is well suited to study the behavior of a system with incomplete information or limited amount of discrete data. Easy of use and accuracy, two significant criteria for project managers when choosing a forecasting model, are considered two additional attributes of the grey system theory. This paper proposes a residual Grey prediction model to forecast the actual cost and the cost at completion of a project based on the grey system theory. Results show that the accuracy of the forecasting model is highly efficient.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceProcedia Computer Science, 2015, 64, 586–593es_ES
dc.titleA residual Grey prediction model for predicting S-curves in projectses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1016/j.procs.2015.08.570es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.procs.2015.08.570
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license