Mostrar el registro sencillo

dc.contributor.authorZarca Lago, Raúl 
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.authorGorri Cirella, Daniel 
dc.contributor.authorBiegler, Lorenz T.
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-05-08T06:41:16Z
dc.date.available2020-06-30T02:45:09Z
dc.date.issued2018-06-15
dc.identifier.issn0376-7388
dc.identifier.issn1873-3123
dc.identifier.otherCTQ2015-66078-Res_ES
dc.identifier.otherCTQ2016-75158-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/13644
dc.description.abstractThe growing production of polyolefins, mainly polyethylene and polypropylene, currently demands increasing outputs of polymer-grade light olefins. The most commonly adopted process for the separation of olefin/paraffin mixtures is performed by energy intensive high pressure or cryogenic distillation, which is considered the most expensive operation in the petrochemical industry. The use of membrane technology offers a compact and modular solution for capital and energy savings, thanks to process intensification. In this work, we move one step forward in the design of hybrid propane/propylene separation systems, using computer aided modeling tools to identify economically optimal combinations of distillation and state-of-the-art membranes. A model is proposed to optimize a hybrid configuration, whereby the membrane performs the bulk separation and the distillation column is intended for the final product polishing, accounting for membrane investment cost and process operating expenses. The decision variables are the membrane area and the column reflux ratio, and the model is able to calculate the optimal feed trays. The upper-bound properties of selected membranes, which define their performance and reliability criteria, have been studied, benchmarking the economic evaluation against conventional distillation in order to assess the expedience of a hybrid system implementation.es_ES
dc.description.sponsorshipFinancial support from the Spanish Ministry of Science under the projects CTQ2015-66078-R and CTQ2016-75158-R (MINECO, Spain-FEDER 2014–2020) is gratefully acknowledged. Raúl Zarca also thanks the Universidad de Cantabria for a postgraduate fellowship.es_ES
dc.format.extent33 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Membrane Science, 2018, 556, 321-328es_ES
dc.subject.otherOptimizationes_ES
dc.subject.otherPropylenees_ES
dc.subject.otherPropanees_ES
dc.subject.otherHybrid distillationes_ES
dc.subject.otherMembranees_ES
dc.subject.otherMathematical modeles_ES
dc.subject.otherProcess intensificationes_ES
dc.titleOptimized distillation coupled with state-of-the-art membranes for propylene purificationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.memsci.2018.04.016es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.memsci.2018.04.016
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license