Mostrar el registro sencillo

dc.contributor.authorPardo Franco, Arturo 
dc.contributor.authorReal Peña, Eusebio 
dc.contributor.authorKrishnaswamy, Venkat
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorPogue, Brian W.
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-04-09T09:22:29Z
dc.date.available2018-04-09T09:22:29Z
dc.date.issued2017-01
dc.identifier.issn1558-254X
dc.identifier.issn0278-0062
dc.identifier.otherFIS2010-19860es_ES
dc.identifier.otherTEC2013-47264-C2-1-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/13430
dc.description.abstractIn Breast Conserving Therapy, surgeons measure the thickness of healthy tissue surrounding an excised tumor (surgical margin) via post-operative histological or visual assessment tests that, for lack of enough standardization and reliability, have recurrence rates in the order of 33%. Spectroscopic interrogation of these margins is possible during surgery, but algorithms are needed for parametric or dimension reduction processing. One methodology for tumor discrimination based on dimensionality reduction and nonparametric estimation - in particular, Directional Kernel Density Estimation - is proposed and tested on spectral image data from breast samples. Once a hyperspectral image of the tumor has been captured, a surgeon assists by establishing Regions of Interest where tissues are qualitatively differentiable. After proper normalization, Directional KDE is used to estimate the likelihood of every pixel in the image belonging to each specified tissue class. This information is enough to yield, in almost real time and with 98% accuracy, results that coincide with those provided by histological H&E validation performed after the surgery.es_ES
dc.description.sponsorshipResearch reported in this paper was funded by projects DA2TOI (codename FIS 2010-19860), FOS4 (codename TEC 2013-47264-C2-1-R) and an undergraduate Research Assistant Fellowship (Beca de Colaboración) entitled “Multispectralenhancement systems for tissue diagnosis in oncology and cardiovascularmedicine,” the latter granted to themain author by the SpanishMinistry of Education, Culture and Sports.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rights© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Transactions on Medical Imaging, 2017, 36(1), 64-73es_ES
dc.subject.otherSurgical guidance/navigationes_ES
dc.subject.otherBreastes_ES
dc.subject.otherDimensionality reductiones_ES
dc.subject.otherImage reconstructiones_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherPattern recognition and classificationes_ES
dc.subject.otherProbabilistic and statistical methodses_ES
dc.subject.otherQuantification and estimationes_ES
dc.subject.otherROC analysises_ES
dc.subject.otherSegmentationes_ES
dc.titleDirectional kernel density estimation for classification of breast tissue spectraes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/TMI.2016.2593948es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/TMI.2016.2593948
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo