• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Directional kernel density estimation for classification of breast tissue spectra

    Ver/Abrir
    DirectionalKernelDen ... (1.404Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/13430
    DOI: 10.1109/TMI.2016.2593948
    ISSN: 1558-254X
    ISSN: 0278-0062
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pardo Franco, ArturoAutoridad Unican; Real Peña, EusebioAutoridad Unican; Krishnaswamy, Venkat; López Higuera, José MiguelAutoridad Unican; Pogue, Brian W.; Conde Portilla, Olga MaríaAutoridad Unican
    Fecha
    2017-01
    Derechos
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Transactions on Medical Imaging, 2017, 36(1), 64-73
    Editorial
    Institute of Electrical and Electronics Engineers Inc.
    Enlace a la publicación
    https://doi.org/10.1109/TMI.2016.2593948
    Palabras clave
    Surgical guidance/navigation
    Breast
    Dimensionality reduction
    Image reconstruction
    Machine learning
    Pattern recognition and classification
    Probabilistic and statistical methods
    Quantification and estimation
    ROC analysis
    Segmentation
    Resumen/Abstract
    In Breast Conserving Therapy, surgeons measure the thickness of healthy tissue surrounding an excised tumor (surgical margin) via post-operative histological or visual assessment tests that, for lack of enough standardization and reliability, have recurrence rates in the order of 33%. Spectroscopic interrogation of these margins is possible during surgery, but algorithms are needed for parametric or dimension reduction processing. One methodology for tumor discrimination based on dimensionality reduction and nonparametric estimation - in particular, Directional Kernel Density Estimation - is proposed and tested on spectral image data from breast samples. Once a hyperspectral image of the tumor has been captured, a surgeon assists by establishing Regions of Interest where tissues are qualitatively differentiable. After proper normalization, Directional KDE is used to estimate the likelihood of every pixel in the image belonging to each specified tissue class. This information is enough to yield, in almost real time and with 98% accuracy, results that coincide with those provided by histological H&E validation performed after the surgery.
    Colecciones a las que pertenece
    • D50 Artículos [312]
    • D50 Proyectos de Investigación [404]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España