Mostrar el registro sencillo

dc.contributor.authorUrtiaga Mendia, Ana María 
dc.contributor.authorSoriano Portilla, Álvaro
dc.contributor.authorCarrillo Abad, Jordi
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-04-09T07:52:29Z
dc.date.available2020-06-30T02:45:09Z
dc.date.issued2018-06
dc.identifier.issn0045-6535
dc.identifier.issn1879-1298
dc.identifier.otherCTM2016-75509-Res_ES
dc.identifier.otherCTQ2015-71650-RDTes_ES
dc.identifier.urihttp://hdl.handle.net/10902/13429
dc.description.abstractThe concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5-600 A m-2) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J=50 A m-2), using NaCl, Na2SO4 and NaClO4, the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO4- was not observed. When using Na2SO4 electrolyte, increasing the applied current density to 350-600 A m-2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities.es_ES
dc.description.sponsorshipSupport from MINECO and SPAIN-FEDER 2014–2020 to project CTM2016-75509-R and to the Spanish Excellence Network E3TECH (CTQ2015-71650-RDT) is acknowledged. J. Carrillo-Abad thanks the Generalitat Valenciana for granting a post doctoral fellowship (APOSTD/2015/019). The authors are thankful to Dr. R. Buck (Chemours Co.) for kindly providing samples of Capstone FS10.es_ES
dc.format.extent28 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2018, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceChemosphere, 2018, 201, 571-577es_ES
dc.subject.other6:2 FTSAes_ES
dc.subject.otherBDDes_ES
dc.subject.otherElectrolysises_ES
dc.subject.otherPerfluorinated alkyl substanceses_ES
dc.subject.otherPFHxAes_ES
dc.subject.otherFluorochemicalses_ES
dc.titleBDD anodic treatment of 6:2 fluorotelomer sulfonate (6:2 FTSA). Evaluation of operating variables and by-product formationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.chemosphere.2018.03.027es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.chemosphere.2018.03.027
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2018, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2018, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada