Mostrar el registro sencillo

dc.contributor.authorSánchez González, Sandra 
dc.contributor.authorDiban Gómez, Nazely 
dc.contributor.authorUrtiaga Mendia, Ana María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-03-07T07:56:24Z
dc.date.available2018-03-07T07:56:24Z
dc.date.issued2018-03-05
dc.identifier.issn2077-0375
dc.identifier.otherCTM2016-75509-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/13217
dc.description.abstractThe present work studies the functional behavior of novel poly(Ɛ-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 º C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.es_ES
dc.description.sponsorshipFinancial support of the Cantabria Explora call through project JP03.640.69 is gratefully acknowledged. The support of project CTM2016-75509-R (MINECO and FEDER-Spain) is granted. We also thank Marta Romay at University of Cantabria who performed part of the experiments.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPI AGes_ES
dc.rightsAtribución 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMembranes, 2018, 8(1), 12es_ES
dc.subject.otherHydrolytic bulk degradation mechanismes_ES
dc.subject.otherIn vitro human neural modelses_ES
dc.subject.otherNeural tissue regenerationes_ES
dc.subject.otherPoly (Ɛ-caprolactone)es_ES
dc.subject.otherReduced graphene oxidees_ES
dc.titleHydrolytic degradation and mechanical stability of poly(Ɛ-caprolactone)/reduced graphene oxide membranes as scaffolds for in vitro neural tissue regenerationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/membranes8010012
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional