• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingenierías Química y Biomolecular
    • D23 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingenierías Química y Biomolecular
    • D23 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of a microfluidic electrochemical cell for the electro-reduction of CO2 to CH3OH

    Ver/Abrir
    ModellingofaMicroflu ... (498.6Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/13111
    DOI: 10.1149/2.0741713jes
    ISSN: 0013-4651
    ISSN: 1945-7111
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Kotb, Yosra; Fateen, Seif-Eddeen K.; Albo Sánchez, JonathanAutoridad Unican; Ismail, Ibrahim
    Fecha
    2017-10
    Derechos
    © The Electrochemical Society, Inc. 2017. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in: Kotb, Y., Fateen, S.K., Albo, J. and Ismail, I., 2017. Modeling of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO2 to CH3OH, Journal of the Electrochemical Society, 164(13), E391-E400.
    Publicado en
    Journal of the Electrochemical Society, 2017, Vol. 164(13), E391-E400
    Editorial
    Electrochemical Society
    Enlace a la publicación
    https://doi.org/10.1149/2.0741713jes
    Resumen/Abstract
    This study focuses on developing a mathematical model for the electrochemical reduction of CO2 into CH3OH in a microfluidic flow cell. The present work is the first attempt to model the electro-reduction of CO2 to alcohols, which is a step forward toward the scale up of the process to industrial operation. The model features a simple geometry of a filter press cell in which the steady state isothermal reduction takes place. All significant physical phenomena occurring inside the cell are taken into account, including mass and charge balances and transport, fluid flow and electrode kinetics. The model is validated and fitted against experimental data and shows an average error of 20.2%. The model quantitatively demonstrated the dominance of the hydrogen evolution over the CH3OH production and the limitations imposed on the process due to the mass transfer of the reactants to the cathode, especially CO2. Also, the model shows that based on the flow pattern of CH3OH, more conductive membrane materials could be used to decrease the potential drop around the membrane in order to improve the process performance.
    Colecciones a las que pertenece
    • D23 Artículos [527]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España