dc.contributor.author | Zarca Lago, Raúl | |
dc.contributor.author | Ortiz Sainz de Aja, Alfredo | |
dc.contributor.author | Gorri Cirella, Daniel | |
dc.contributor.author | Ortiz Uribe, Inmaculada | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2018-02-15T07:20:10Z | |
dc.date.available | 2019-06-30T02:45:10Z | |
dc.date.issued | 2017-06-08 | |
dc.identifier.issn | 1383-5866 | |
dc.identifier.issn | 1873-3794 | |
dc.identifier.other | CTQ2015-66078-R | es_ES |
dc.identifier.other | CTQ2016-75158-R | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/13053 | |
dc.description.abstract | In this work, a new consistent mathematical model for the description of the olefin flux through Ag+-containing polymeric dense membranes is proposed. A fixed site carrier "hopping" parameter acting as an effective permeability for this specific transport phenomenon is defined and calculated for the first time. This study reports a simple and versatile approach that can be incorporated into future models to simulate the more complex mobile/fixed hybrid mechanism acting in composite membranes.
Furthermore, in order to validate the model, the proof of concept has been carried out with PVDF-HFP/AgBF4 facilitated transport membranes. The experimental analysis has been performed by the continuous flow permeation method through flat membranes containing increasing silver loads, from 17 to 38% w/w at olefin partial pressures ranging from 0.5 to 1.5 bar and temperatures of 293 and 303 K. These membranes showed a promising performance, reaching values of propylene permeability up to 1800 Barrer and very high propylene/propane selectivities. The reported model constitutes a very useful tool for process optimisation and scale-up. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Ministry of Science under the projects CTQ2015-66078-R and CTQ2016-75158-R (MINECO, Spain-FEDER 2014–2020) is gratefully acknowledged. Raúl Zarca also thanks the Universidad de Cantabria for a postgraduate fellowship. | es_ES |
dc.format.extent | 33 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Separation and Purification Technology, 2017, 180, 82-89 | es_ES |
dc.subject.other | Propylene | es_ES |
dc.subject.other | Propane | es_ES |
dc.subject.other | AgBF4 | es_ES |
dc.subject.other | PVDF-HFP | es_ES |
dc.subject.other | Membrane | es_ES |
dc.subject.other | Fixed-site carrier mathematical model | es_ES |
dc.title | A practical approach to fixed-site-carrier facilitated transport modeling for the separation of propylene/propane mixtures through silver-containing polymeric membranes | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.seppur.2017.02.050 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1016/j.seppur.2017.02.050 | |
dc.type.version | acceptedVersion | es_ES |