Mostrar el registro sencillo

dc.contributor.authorGarcía Herrero, María Isabel 
dc.contributor.authorMargallo Blanco, María 
dc.contributor.authorOnandía de Dios, Raquel
dc.contributor.authorAldaco García, Rubén 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-02-14T14:23:32Z
dc.date.available2019-02-28T03:45:15Z
dc.date.issued2017-02-15
dc.identifier.issn0048-9697
dc.identifier.issn1879-1026
dc.identifier.otherCTM2013-43539-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/13040
dc.description.abstractLife Cycle Assessment (LCA) has been used to assess the environmental sustainability of the chlor-alkali production in Europe. The three current technologies applied nowadays are mercury, diaphragm, and membrane cell technology. Despite, having achieved higher energy efficiencies since the introduction of membrane technology, energy consumption is still one of the most important issues in this sector. An emerging technology namely oxygen-depolarised cathodes (ODC) is suggested as a promising approach for reducing the electrolysis energy demand. However, its requirement of pure oxygen and the lack of production of hydrogen, which could otherwise be valorised, are controversial features for greener chlorine production. The aim of this work is to evaluate and compare the environmental profiles of the current and emerging technologies for chlorine production and to identify the main hot spots of the process. Salt mining, brine preparation, electrolysis technology and products treatment are included inside the system boundaries. Twelve environmental impact categories grouped into natural resources usage and environmental burdens are assessed from cradle to gate and further normalised and weighted. Furthermore, hydrogen valorisation, current density and allocation procedure are subjected to sensitivity analysis. Results show that the electrolysis stage is the main contributor to the environmental impacts due to energy consumption, causing 99.5–72% of these impacts. Mercury is the less environmentally sustainable technology, closely followed by diaphragm. This difference becomes bigger after normalisation, owing to hazardous waste generated by mercury technique. Conversely, best results are obtained for ODC instead of membrane scenario, although the reduction in energy requirements is lesser than expected (7%).es_ES
dc.description.sponsorshipThis work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) project CTM2013-43539-R. The authors are grateful for this funding.es_ES
dc.format.extent44 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceScience of the Total Environment, 2017, 580, 147-157es_ES
dc.subject.otherLife Cycle Assessmentes_ES
dc.subject.otherChlor-alkali industryes_ES
dc.subject.otherMembrane technologyes_ES
dc.subject.otherOxygen-depolarised cathode technologyes_ES
dc.titleEnvironmental challenges of the chlor-alkali production: Seeking answers from a life cycle approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.scitotenv.2016.10.202es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.scitotenv.2016.10.202
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada