Mostrar el registro sencillo

dc.contributor.authorCastillo Martín, Andrés del 
dc.contributor.authorÁlvarez Guerra, Manuel 
dc.contributor.authorSolla Gullón, José
dc.contributor.authorSáez Fernández, Alfonso
dc.contributor.authorMontiel Leguey, Vicente
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-02-14T14:20:59Z
dc.date.available2019-03-31T02:45:12Z
dc.date.issued2017-03
dc.identifier.issn2212-9820
dc.identifier.issn2212-9839
dc.identifier.otherCTQ2013-48280-C3-1-Res_ES
dc.identifier.otherCTQ2013-48280-C3-3-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/13039
dc.description.abstractElectrochemical reduction of CO2 has been pointed out as an interesting strategy to convert CO2 into useful chemicals. In addition, coupling CO2 electroreduction with renewable energies would allow storing electricity from intermittent renewable sources such as wind or solar power. In this work, an easy and fast method is adapted for the synthesis of pure and carbon supported Sn nanoparticles. The resulting nanoparticles have been characterized by transmission electron microscopy and their electrocatalytic properties towards CO2 reduction evaluated by cyclic voltammetry. Carbon supported Sn nanoparticles have been subsequently used to prepare Gas Diffusion Electrodes (Sn/C-GDEs). The electrodes have been characterized by scanning electron microscopy and also by cyclic voltammetry. Finally, the electrodes were tested on a continuous and single pass CO2 electroreduction filter-press type cell system in aqueous solution, to obtain formate at ambient pressure and temperature. These Sn/C-GDEs allow working at high current densities with low catholyte flow. Thus, for instance, at 150 mA cm−2, a 70% Faradaic Efficiency (FE) was obtained with a formate concentration of 2.5 g L−1. Interestingly, by increasing the current density to 200 mA cm−2 and decreasing the flow rate, a concentration over 16 g L−1 was reached. Despite the high concentrations obtained, further research is still required to keep high FE operating at high current densities.es_ES
dc.description.sponsorshipThis work was conducted under the framework of the Spanish Ministry of Economy and Competitiveness projects CTQ2013-48280-C3-1-R and CTQ2013-48280-C3-3-R. Andrés Del Castillo also acknowledges the research grant from University of Cantabria, co-financed by the Regional Government of Cantabria.es_ES
dc.format.extent26 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceJournal of CO2 Utilization, 2017, 18, 222-228es_ES
dc.subject.otherCarbon dioxidees_ES
dc.subject.otherTin nanoparticleses_ES
dc.subject.otherFormatees_ES
dc.subject.otherElectroreductiones_ES
dc.subject.otherGas diffusion electrodeses_ES
dc.titleSn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formatees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jcou.2017.01.021es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jcou.2017.01.021
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2017, Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada